Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384342012> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4384342012 endingPage "97" @default.
- W4384342012 startingPage "97" @default.
- W4384342012 abstract "Retinal vein segmentation is a crucial task that helps in the early detection of health problems, making it an essential area of research. With recent advancements in artificial intelligence, we can now develop highly reliable and efficient models for this task. CNN has been the traditional choice for image analysis tasks. However, the emergence of visual transformers with their unique attention mechanism has proved to be a game-changer. However, visual transformers require a large amount of data and computational power, making them unsuitable for tasks with limited data and resources. To deal with this constraint, we adapted the attention module of visual transformers and integrated it into a CNN-based UNET network, achieving superior performance compared to other models. The model achieved a 0.89 recall, 0.98 AUC, 0.97 accuracy, and 0.97 sensitivity on various datasets, including HRF, Drive, LES-AV, CHASE-DB1, Aria-A, Aria-D, Aria-C, IOSTAR, STARE and DRGAHIS. Moreover, the model can recognize blood vessels accurately, regardless of camera type or the original image resolution, ensuring that it generalizes well. This breakthrough in retinal vein segmentation could improve the early diagnosis of several health conditions." @default.
- W4384342012 created "2023-07-15" @default.
- W4384342012 creator A5034503877 @default.
- W4384342012 creator A5054830331 @default.
- W4384342012 creator A5065921870 @default.
- W4384342012 creator A5069265613 @default.
- W4384342012 date "2023-07-13" @default.
- W4384342012 modified "2023-09-26" @default.
- W4384342012 title "Segmentation of Retinal Blood Vessels Using Focal Attention Convolution Blocks in a UNET" @default.
- W4384342012 cites W1901129140 @default.
- W4384342012 cites W1978917654 @default.
- W4384342012 cites W2097117768 @default.
- W4384342012 cites W2194775991 @default.
- W4384342012 cites W2752747624 @default.
- W4384342012 cites W2791117644 @default.
- W4384342012 cites W2884585870 @default.
- W4384342012 cites W2920497957 @default.
- W4384342012 cites W2960665958 @default.
- W4384342012 cites W3015301375 @default.
- W4384342012 cites W3025177399 @default.
- W4384342012 cites W3026680290 @default.
- W4384342012 cites W3031997074 @default.
- W4384342012 cites W3035268411 @default.
- W4384342012 cites W3041133507 @default.
- W4384342012 cites W3047388468 @default.
- W4384342012 cites W3048209253 @default.
- W4384342012 cites W3048610712 @default.
- W4384342012 cites W3116714234 @default.
- W4384342012 cites W3124345384 @default.
- W4384342012 cites W3124447910 @default.
- W4384342012 cites W3138678718 @default.
- W4384342012 cites W3140854437 @default.
- W4384342012 cites W3155737436 @default.
- W4384342012 cites W3169847394 @default.
- W4384342012 cites W3172509117 @default.
- W4384342012 cites W3177828909 @default.
- W4384342012 cites W4207081122 @default.
- W4384342012 cites W4210562455 @default.
- W4384342012 cites W4295529518 @default.
- W4384342012 cites W4312349930 @default.
- W4384342012 cites W4367598041 @default.
- W4384342012 cites W4367672983 @default.
- W4384342012 doi "https://doi.org/10.3390/technologies11040097" @default.
- W4384342012 hasPublicationYear "2023" @default.
- W4384342012 type Work @default.
- W4384342012 citedByCount "0" @default.
- W4384342012 crossrefType "journal-article" @default.
- W4384342012 hasAuthorship W4384342012A5034503877 @default.
- W4384342012 hasAuthorship W4384342012A5054830331 @default.
- W4384342012 hasAuthorship W4384342012A5065921870 @default.
- W4384342012 hasAuthorship W4384342012A5069265613 @default.
- W4384342012 hasBestOaLocation W43843420121 @default.
- W4384342012 hasConcept C100660578 @default.
- W4384342012 hasConcept C119599485 @default.
- W4384342012 hasConcept C119857082 @default.
- W4384342012 hasConcept C127413603 @default.
- W4384342012 hasConcept C138885662 @default.
- W4384342012 hasConcept C154945302 @default.
- W4384342012 hasConcept C165801399 @default.
- W4384342012 hasConcept C31972630 @default.
- W4384342012 hasConcept C41008148 @default.
- W4384342012 hasConcept C41895202 @default.
- W4384342012 hasConcept C66322947 @default.
- W4384342012 hasConcept C89600930 @default.
- W4384342012 hasConceptScore W4384342012C100660578 @default.
- W4384342012 hasConceptScore W4384342012C119599485 @default.
- W4384342012 hasConceptScore W4384342012C119857082 @default.
- W4384342012 hasConceptScore W4384342012C127413603 @default.
- W4384342012 hasConceptScore W4384342012C138885662 @default.
- W4384342012 hasConceptScore W4384342012C154945302 @default.
- W4384342012 hasConceptScore W4384342012C165801399 @default.
- W4384342012 hasConceptScore W4384342012C31972630 @default.
- W4384342012 hasConceptScore W4384342012C41008148 @default.
- W4384342012 hasConceptScore W4384342012C41895202 @default.
- W4384342012 hasConceptScore W4384342012C66322947 @default.
- W4384342012 hasConceptScore W4384342012C89600930 @default.
- W4384342012 hasIssue "4" @default.
- W4384342012 hasLocation W43843420121 @default.
- W4384342012 hasOpenAccess W4384342012 @default.
- W4384342012 hasPrimaryLocation W43843420121 @default.
- W4384342012 hasRelatedWork W1669643531 @default.
- W4384342012 hasRelatedWork W2005437358 @default.
- W4384342012 hasRelatedWork W2008656436 @default.
- W4384342012 hasRelatedWork W2023558673 @default.
- W4384342012 hasRelatedWork W2039154422 @default.
- W4384342012 hasRelatedWork W2110230079 @default.
- W4384342012 hasRelatedWork W2122581818 @default.
- W4384342012 hasRelatedWork W2134924024 @default.
- W4384342012 hasRelatedWork W2517104666 @default.
- W4384342012 hasRelatedWork W2182382398 @default.
- W4384342012 hasVolume "11" @default.
- W4384342012 isParatext "false" @default.
- W4384342012 isRetracted "false" @default.
- W4384342012 workType "article" @default.