Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384342883> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4384342883 endingPage "359" @default.
- W4384342883 startingPage "346" @default.
- W4384342883 abstract "The paper is concerned with the development and comparison of alternative machine learning methods of determining the type of truck crossing a bridge from the dynamic response it induces within the bridge structure, the so-called weigh-in-motion problem. Weigh-in-motion is a rich engineering problem presenting many challenges for current machine learning technologies, and for this reason is proposed as a benchmark for guiding and assessing advances in the application of this field of artificial intelligence. A review is first provided of existing methods of determining truck types and loading attributes using both machine learning and heuristic search techniques. The most promising approach to date, that of artificial neural networks, is then compared to support vector machines in a comprehensive study considering a range of configurations of both modeling techniques. A local scatter point smoothing schema is adopted as a means of selecting an optimal set of design parameters for each model type. Three main model formats are considered: (i) a monolithic model structure with a one-versus-all truck type classification strategy; (ii) an array of sub-models each dedicated to one truck type with a one-versus-all classification strategy; and (iii) an array of sub-models each dedicated to selecting between pairs of trucks in a one-versus-one classification strategy. Overall, the formats that used an array of sub-models performed best at truck classification, with the support vector machines having a slight edge over the artificial neural networks. The paper concludes with some suggestions for extending the work to a broader scope of problems." @default.
- W4384342883 created "2023-07-15" @default.
- W4384342883 creator A5007739957 @default.
- W4384342883 creator A5084898783 @default.
- W4384342883 date "2023-07-14" @default.
- W4384342883 modified "2023-10-18" @default.
- W4384342883 title "Machine learning approaches to determining truck type from bridge loading response" @default.
- W4384342883 cites W1511382581 @default.
- W4384342883 cites W1902950398 @default.
- W4384342883 cites W1989976610 @default.
- W4384342883 cites W2036935990 @default.
- W4384342883 cites W2045019904 @default.
- W4384342883 cites W2091543927 @default.
- W4384342883 cites W2110390205 @default.
- W4384342883 cites W2194775991 @default.
- W4384342883 cites W2484874784 @default.
- W4384342883 cites W2755281137 @default.
- W4384342883 cites W2894681044 @default.
- W4384342883 cites W2903779985 @default.
- W4384342883 cites W2906071845 @default.
- W4384342883 cites W3083072990 @default.
- W4384342883 cites W4239510810 @default.
- W4384342883 doi "https://doi.org/10.36680/j.itcon.2023.018" @default.
- W4384342883 hasPublicationYear "2023" @default.
- W4384342883 type Work @default.
- W4384342883 citedByCount "0" @default.
- W4384342883 crossrefType "journal-article" @default.
- W4384342883 hasAuthorship W4384342883A5007739957 @default.
- W4384342883 hasAuthorship W4384342883A5084898783 @default.
- W4384342883 hasBestOaLocation W43843428831 @default.
- W4384342883 hasConcept C100776233 @default.
- W4384342883 hasConcept C119857082 @default.
- W4384342883 hasConcept C12267149 @default.
- W4384342883 hasConcept C126322002 @default.
- W4384342883 hasConcept C127413603 @default.
- W4384342883 hasConcept C154945302 @default.
- W4384342883 hasConcept C171146098 @default.
- W4384342883 hasConcept C173801870 @default.
- W4384342883 hasConcept C177264268 @default.
- W4384342883 hasConcept C199360897 @default.
- W4384342883 hasConcept C202444582 @default.
- W4384342883 hasConcept C33923547 @default.
- W4384342883 hasConcept C41008148 @default.
- W4384342883 hasConcept C50644808 @default.
- W4384342883 hasConcept C52121051 @default.
- W4384342883 hasConcept C71924100 @default.
- W4384342883 hasConcept C9652623 @default.
- W4384342883 hasConceptScore W4384342883C100776233 @default.
- W4384342883 hasConceptScore W4384342883C119857082 @default.
- W4384342883 hasConceptScore W4384342883C12267149 @default.
- W4384342883 hasConceptScore W4384342883C126322002 @default.
- W4384342883 hasConceptScore W4384342883C127413603 @default.
- W4384342883 hasConceptScore W4384342883C154945302 @default.
- W4384342883 hasConceptScore W4384342883C171146098 @default.
- W4384342883 hasConceptScore W4384342883C173801870 @default.
- W4384342883 hasConceptScore W4384342883C177264268 @default.
- W4384342883 hasConceptScore W4384342883C199360897 @default.
- W4384342883 hasConceptScore W4384342883C202444582 @default.
- W4384342883 hasConceptScore W4384342883C33923547 @default.
- W4384342883 hasConceptScore W4384342883C41008148 @default.
- W4384342883 hasConceptScore W4384342883C50644808 @default.
- W4384342883 hasConceptScore W4384342883C52121051 @default.
- W4384342883 hasConceptScore W4384342883C71924100 @default.
- W4384342883 hasConceptScore W4384342883C9652623 @default.
- W4384342883 hasLocation W43843428831 @default.
- W4384342883 hasOpenAccess W4384342883 @default.
- W4384342883 hasPrimaryLocation W43843428831 @default.
- W4384342883 hasRelatedWork W1996541855 @default.
- W4384342883 hasRelatedWork W2050049080 @default.
- W4384342883 hasRelatedWork W2058391315 @default.
- W4384342883 hasRelatedWork W2347792353 @default.
- W4384342883 hasRelatedWork W2937631562 @default.
- W4384342883 hasRelatedWork W2979979539 @default.
- W4384342883 hasRelatedWork W3194539120 @default.
- W4384342883 hasRelatedWork W3195168932 @default.
- W4384342883 hasRelatedWork W4361795583 @default.
- W4384342883 hasRelatedWork W4362499384 @default.
- W4384342883 hasVolume "28" @default.
- W4384342883 isParatext "false" @default.
- W4384342883 isRetracted "false" @default.
- W4384342883 workType "article" @default.