Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384343067> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4384343067 abstract "Estimating the forming limit diagram (FLD) is tedious and cost-intensive. Methods driven by data and artificial intelligence are used to determine the relationship between scaled thickness and the forming rates of various cups drawn out of ETP copper sheets. Machine learning (ML) techniques have a good chance of predicting the FLD of copper alloys, and they are being used increasingly in sensitive electronic and structural applications. The current research aims to create ML-based artificial neural network (ANN) tools to model the relationship between scaled thickness and forming rates as a function of formability. The FLD is measured for copper strips of initial dimensions of 1500 mm long, 750 mm wide, and 6 mm thick, whose thickness was reduced successively by 50% in nine incremental steps. Thus, 3, 1.5, 0.75, 0.38, and 0.19 mm sheets were obtained and used to determine FLD through the Nakajima approach. An FEA model of the drawing was made in Altair Inspire Form, and the simulation results were used to train a two-step ML. A Bayesian regularization (BR) and Levenberg-Marquardt algorithm (LM) were used in the first step to predict strains’ maximum and minimum points. In the second step, the minor strains predicted in the first step are used as inputs. Using the same feature set, the BR and LM algorithms predict the major strain, showing a linear trend until the middle and then a nonlinear trend. The trained ML model was used to predict unknown intermediate values for estimating the over-learning and over-fitting problems here for 2 and 0.25 mm thick sheets and are validated experimentally. The variation between the FLDs of predicted and experimentally verified data falls between 2% and 5%. Such small changes in the FLD values show that the proposed ML model could be used to predict the FLDs of copper strips." @default.
- W4384343067 created "2023-07-15" @default.
- W4384343067 creator A5009189024 @default.
- W4384343067 creator A5018560971 @default.
- W4384343067 creator A5064209837 @default.
- W4384343067 date "2023-07-14" @default.
- W4384343067 modified "2023-09-25" @default.
- W4384343067 title "Artificial Neural Network prediction of forming limit diagram for directionally-rolled, size scaled copper strips" @default.
- W4384343067 cites W1996694952 @default.
- W4384343067 cites W1997268324 @default.
- W4384343067 cites W2017778996 @default.
- W4384343067 cites W2028327813 @default.
- W4384343067 cites W2028701808 @default.
- W4384343067 cites W2030406072 @default.
- W4384343067 cites W2038397269 @default.
- W4384343067 cites W2077686656 @default.
- W4384343067 cites W2079630551 @default.
- W4384343067 cites W2087559329 @default.
- W4384343067 cites W2138468285 @default.
- W4384343067 cites W2559951252 @default.
- W4384343067 cites W2757605355 @default.
- W4384343067 cites W2896488504 @default.
- W4384343067 cites W2966520318 @default.
- W4384343067 cites W3006157761 @default.
- W4384343067 cites W3082203234 @default.
- W4384343067 cites W3156816402 @default.
- W4384343067 cites W3199396962 @default.
- W4384343067 cites W4220838130 @default.
- W4384343067 cites W4296780083 @default.
- W4384343067 doi "https://doi.org/10.1177/09544062231184396" @default.
- W4384343067 hasPublicationYear "2023" @default.
- W4384343067 type Work @default.
- W4384343067 citedByCount "0" @default.
- W4384343067 crossrefType "journal-article" @default.
- W4384343067 hasAuthorship W4384343067A5009189024 @default.
- W4384343067 hasAuthorship W4384343067A5018560971 @default.
- W4384343067 hasAuthorship W4384343067A5064209837 @default.
- W4384343067 hasConcept C11413529 @default.
- W4384343067 hasConcept C121332964 @default.
- W4384343067 hasConcept C154945302 @default.
- W4384343067 hasConcept C158622935 @default.
- W4384343067 hasConcept C191897082 @default.
- W4384343067 hasConcept C192562407 @default.
- W4384343067 hasConcept C200925200 @default.
- W4384343067 hasConcept C2776135515 @default.
- W4384343067 hasConcept C2777959984 @default.
- W4384343067 hasConcept C33923547 @default.
- W4384343067 hasConcept C41008148 @default.
- W4384343067 hasConcept C50644808 @default.
- W4384343067 hasConcept C62520636 @default.
- W4384343067 hasConcept C79127381 @default.
- W4384343067 hasConceptScore W4384343067C11413529 @default.
- W4384343067 hasConceptScore W4384343067C121332964 @default.
- W4384343067 hasConceptScore W4384343067C154945302 @default.
- W4384343067 hasConceptScore W4384343067C158622935 @default.
- W4384343067 hasConceptScore W4384343067C191897082 @default.
- W4384343067 hasConceptScore W4384343067C192562407 @default.
- W4384343067 hasConceptScore W4384343067C200925200 @default.
- W4384343067 hasConceptScore W4384343067C2776135515 @default.
- W4384343067 hasConceptScore W4384343067C2777959984 @default.
- W4384343067 hasConceptScore W4384343067C33923547 @default.
- W4384343067 hasConceptScore W4384343067C41008148 @default.
- W4384343067 hasConceptScore W4384343067C50644808 @default.
- W4384343067 hasConceptScore W4384343067C62520636 @default.
- W4384343067 hasConceptScore W4384343067C79127381 @default.
- W4384343067 hasLocation W43843430671 @default.
- W4384343067 hasOpenAccess W4384343067 @default.
- W4384343067 hasPrimaryLocation W43843430671 @default.
- W4384343067 hasRelatedWork W1979008373 @default.
- W4384343067 hasRelatedWork W2020261977 @default.
- W4384343067 hasRelatedWork W2044931832 @default.
- W4384343067 hasRelatedWork W2132384148 @default.
- W4384343067 hasRelatedWork W2735339326 @default.
- W4384343067 hasRelatedWork W2899084033 @default.
- W4384343067 hasRelatedWork W3000973706 @default.
- W4384343067 hasRelatedWork W4384343067 @default.
- W4384343067 hasRelatedWork W2182304229 @default.
- W4384343067 hasRelatedWork W2307344253 @default.
- W4384343067 isParatext "false" @default.
- W4384343067 isRetracted "false" @default.
- W4384343067 workType "article" @default.