Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384343205> ?p ?o ?g. }
- W4384343205 endingPage "4552" @default.
- W4384343205 startingPage "4523" @default.
- W4384343205 abstract "A Hamiltonian reduction approach is defined, studied, and finally used to derive asymptotic models of internal wave propagation in density stratified fluids in two-dimensional domains. Beginning with the general Hamiltonian formalism of Benjamin [1] for an ideal, stably stratified Euler fluid, the corresponding structure is systematically reduced to the setup of two homogeneous fluids under gravity, separated by an interface and confined between two infinite horizontal plates. A long-wave, small-amplitude asymptotics is then used to obtain a simplified model that encapsulates most of the known properties of the dynamics of such systems, such as bidirectional wave propagation and maximal amplitude travelling waves in the form of fronts. Further reductions, and in particular devising an asymptotic extension of Dirac's theory of Hamiltonian constraints, lead to the completely integrable evolution equations previously considered in the literature for limiting forms of the dynamics of stratified fluids. To assess the performance of the asymptotic models, special solutions are studied and compared with those of the parent equations." @default.
- W4384343205 created "2023-07-15" @default.
- W4384343205 creator A5031219622 @default.
- W4384343205 creator A5043732061 @default.
- W4384343205 creator A5051195478 @default.
- W4384343205 creator A5073442015 @default.
- W4384343205 creator A5020573834 @default.
- W4384343205 date "2023-07-14" @default.
- W4384343205 modified "2023-10-01" @default.
- W4384343205 title "Simple two-layer dispersive models in the Hamiltonian reduction formalism" @default.
- W4384343205 cites W1536934466 @default.
- W4384343205 cites W1624314306 @default.
- W4384343205 cites W1972259804 @default.
- W4384343205 cites W1972688082 @default.
- W4384343205 cites W1975260938 @default.
- W4384343205 cites W1978652497 @default.
- W4384343205 cites W1990134138 @default.
- W4384343205 cites W2000752083 @default.
- W4384343205 cites W2002465910 @default.
- W4384343205 cites W2003405066 @default.
- W4384343205 cites W2011690933 @default.
- W4384343205 cites W2014605738 @default.
- W4384343205 cites W2022105559 @default.
- W4384343205 cites W2052497704 @default.
- W4384343205 cites W2063197195 @default.
- W4384343205 cites W2077755964 @default.
- W4384343205 cites W2079808711 @default.
- W4384343205 cites W2082614932 @default.
- W4384343205 cites W2090355630 @default.
- W4384343205 cites W2090885565 @default.
- W4384343205 cites W2093785095 @default.
- W4384343205 cites W2094553410 @default.
- W4384343205 cites W2099392098 @default.
- W4384343205 cites W2114823144 @default.
- W4384343205 cites W2125433961 @default.
- W4384343205 cites W2132786737 @default.
- W4384343205 cites W2141172861 @default.
- W4384343205 cites W2145121432 @default.
- W4384343205 cites W2155804277 @default.
- W4384343205 cites W2350683336 @default.
- W4384343205 cites W2392111020 @default.
- W4384343205 cites W2563226006 @default.
- W4384343205 cites W2951984665 @default.
- W4384343205 cites W2963366101 @default.
- W4384343205 cites W3033631097 @default.
- W4384343205 cites W3103885406 @default.
- W4384343205 cites W4232751890 @default.
- W4384343205 cites W4255940269 @default.
- W4384343205 doi "https://doi.org/10.1088/1361-6544/ace3a0" @default.
- W4384343205 hasPublicationYear "2023" @default.
- W4384343205 type Work @default.
- W4384343205 citedByCount "0" @default.
- W4384343205 crossrefType "journal-article" @default.
- W4384343205 hasAuthorship W4384343205A5020573834 @default.
- W4384343205 hasAuthorship W4384343205A5031219622 @default.
- W4384343205 hasAuthorship W4384343205A5043732061 @default.
- W4384343205 hasAuthorship W4384343205A5051195478 @default.
- W4384343205 hasAuthorship W4384343205A5073442015 @default.
- W4384343205 hasBestOaLocation W43843432051 @default.
- W4384343205 hasConcept C109798219 @default.
- W4384343205 hasConcept C121332964 @default.
- W4384343205 hasConcept C121770821 @default.
- W4384343205 hasConcept C126255220 @default.
- W4384343205 hasConcept C130787639 @default.
- W4384343205 hasConcept C134306372 @default.
- W4384343205 hasConcept C136864674 @default.
- W4384343205 hasConcept C142362112 @default.
- W4384343205 hasConcept C151342819 @default.
- W4384343205 hasConcept C153349607 @default.
- W4384343205 hasConcept C180205008 @default.
- W4384343205 hasConcept C196558001 @default.
- W4384343205 hasConcept C200741047 @default.
- W4384343205 hasConcept C2776310255 @default.
- W4384343205 hasConcept C2779729707 @default.
- W4384343205 hasConcept C33923547 @default.
- W4384343205 hasConcept C37914503 @default.
- W4384343205 hasConcept C38409319 @default.
- W4384343205 hasConcept C52220454 @default.
- W4384343205 hasConcept C558565934 @default.
- W4384343205 hasConcept C57879066 @default.
- W4384343205 hasConcept C62520636 @default.
- W4384343205 hasConcept C62884695 @default.
- W4384343205 hasConcept C73301696 @default.
- W4384343205 hasConcept C74650414 @default.
- W4384343205 hasConceptScore W4384343205C109798219 @default.
- W4384343205 hasConceptScore W4384343205C121332964 @default.
- W4384343205 hasConceptScore W4384343205C121770821 @default.
- W4384343205 hasConceptScore W4384343205C126255220 @default.
- W4384343205 hasConceptScore W4384343205C130787639 @default.
- W4384343205 hasConceptScore W4384343205C134306372 @default.
- W4384343205 hasConceptScore W4384343205C136864674 @default.
- W4384343205 hasConceptScore W4384343205C142362112 @default.
- W4384343205 hasConceptScore W4384343205C151342819 @default.
- W4384343205 hasConceptScore W4384343205C153349607 @default.
- W4384343205 hasConceptScore W4384343205C180205008 @default.
- W4384343205 hasConceptScore W4384343205C196558001 @default.
- W4384343205 hasConceptScore W4384343205C200741047 @default.
- W4384343205 hasConceptScore W4384343205C2776310255 @default.