Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384343676> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4384343676 endingPage "37" @default.
- W4384343676 startingPage "29" @default.
- W4384343676 abstract "Abstract The energy sector occupies a central role in European policy regarding the sustainability and climate change ambitions. This economic sector gained even more importance in the context of a growing energy demand and the threat to energy security and stability in Eastern Europe. The administrative changes from the past years and the shift towards renewable energy sources created the momentum for a general transformation of the energy sector. The research in this field is much needed in order to find the best solutions to predict the energy demand and how to efficiently satisfy it. The purpose of this paper is to assess the economic impact of using artificial neural networks on a dataset that captures information from one building about the energy consumption. The network follows a Long – Short Term Memory architecture and it is characterized by a Root Mean Squared Propagation function for optimization. The analysis consists in the comparison of the performance of three activation functions: Rectified Linear Unit, Sigmoid and Tanh. The results complement the existing research in the field by focusing on the prediction of energy consumption at building level. The case study indicates that the Rectified Linear Unit and Tanh functions are more appropriate than Sigmoid to be used in an LSTM network applied on energy consumption data. The former performs better in terms of accuracy, measured by the Mean Absolute Value, and has similar computational costs to Tanh, with a slightly larger value for training time." @default.
- W4384343676 created "2023-07-15" @default.
- W4384343676 creator A5028152203 @default.
- W4384343676 creator A5031482599 @default.
- W4384343676 date "2023-07-01" @default.
- W4384343676 modified "2023-09-27" @default.
- W4384343676 title "A Performance-Driven Economic Analysis of a LSTM Neural Network Used for Predicting Building Energy Consumption" @default.
- W4384343676 cites W2064675550 @default.
- W4384343676 cites W3021030633 @default.
- W4384343676 cites W3024790739 @default.
- W4384343676 cites W3081707209 @default.
- W4384343676 cites W3217410715 @default.
- W4384343676 cites W4280568444 @default.
- W4384343676 doi "https://doi.org/10.2478/picbe-2023-0005" @default.
- W4384343676 hasPublicationYear "2023" @default.
- W4384343676 type Work @default.
- W4384343676 citedByCount "0" @default.
- W4384343676 crossrefType "journal-article" @default.
- W4384343676 hasAuthorship W4384343676A5028152203 @default.
- W4384343676 hasAuthorship W4384343676A5031482599 @default.
- W4384343676 hasBestOaLocation W43843436761 @default.
- W4384343676 hasConcept C119599485 @default.
- W4384343676 hasConcept C126255220 @default.
- W4384343676 hasConcept C127413603 @default.
- W4384343676 hasConcept C134306372 @default.
- W4384343676 hasConcept C134560507 @default.
- W4384343676 hasConcept C144024400 @default.
- W4384343676 hasConcept C149782125 @default.
- W4384343676 hasConcept C151730666 @default.
- W4384343676 hasConcept C154945302 @default.
- W4384343676 hasConcept C162324750 @default.
- W4384343676 hasConcept C188573790 @default.
- W4384343676 hasConcept C2777172336 @default.
- W4384343676 hasConcept C2779343474 @default.
- W4384343676 hasConcept C2780165032 @default.
- W4384343676 hasConcept C30772137 @default.
- W4384343676 hasConcept C33923547 @default.
- W4384343676 hasConcept C36289849 @default.
- W4384343676 hasConcept C41008148 @default.
- W4384343676 hasConcept C50644808 @default.
- W4384343676 hasConcept C81388566 @default.
- W4384343676 hasConcept C86803240 @default.
- W4384343676 hasConcept C92047909 @default.
- W4384343676 hasConceptScore W4384343676C119599485 @default.
- W4384343676 hasConceptScore W4384343676C126255220 @default.
- W4384343676 hasConceptScore W4384343676C127413603 @default.
- W4384343676 hasConceptScore W4384343676C134306372 @default.
- W4384343676 hasConceptScore W4384343676C134560507 @default.
- W4384343676 hasConceptScore W4384343676C144024400 @default.
- W4384343676 hasConceptScore W4384343676C149782125 @default.
- W4384343676 hasConceptScore W4384343676C151730666 @default.
- W4384343676 hasConceptScore W4384343676C154945302 @default.
- W4384343676 hasConceptScore W4384343676C162324750 @default.
- W4384343676 hasConceptScore W4384343676C188573790 @default.
- W4384343676 hasConceptScore W4384343676C2777172336 @default.
- W4384343676 hasConceptScore W4384343676C2779343474 @default.
- W4384343676 hasConceptScore W4384343676C2780165032 @default.
- W4384343676 hasConceptScore W4384343676C30772137 @default.
- W4384343676 hasConceptScore W4384343676C33923547 @default.
- W4384343676 hasConceptScore W4384343676C36289849 @default.
- W4384343676 hasConceptScore W4384343676C41008148 @default.
- W4384343676 hasConceptScore W4384343676C50644808 @default.
- W4384343676 hasConceptScore W4384343676C81388566 @default.
- W4384343676 hasConceptScore W4384343676C86803240 @default.
- W4384343676 hasConceptScore W4384343676C92047909 @default.
- W4384343676 hasIssue "1" @default.
- W4384343676 hasLocation W43843436761 @default.
- W4384343676 hasOpenAccess W4384343676 @default.
- W4384343676 hasPrimaryLocation W43843436761 @default.
- W4384343676 hasRelatedWork W1969622631 @default.
- W4384343676 hasRelatedWork W2037801628 @default.
- W4384343676 hasRelatedWork W2502168120 @default.
- W4384343676 hasRelatedWork W2767072113 @default.
- W4384343676 hasRelatedWork W3012292080 @default.
- W4384343676 hasRelatedWork W3089239123 @default.
- W4384343676 hasRelatedWork W3152545963 @default.
- W4384343676 hasRelatedWork W3208002632 @default.
- W4384343676 hasRelatedWork W4290997474 @default.
- W4384343676 hasRelatedWork W4378469233 @default.
- W4384343676 hasVolume "17" @default.
- W4384343676 isParatext "false" @default.
- W4384343676 isRetracted "false" @default.
- W4384343676 workType "article" @default.