Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384343796> ?p ?o ?g. }
- W4384343796 endingPage "139510" @default.
- W4384343796 startingPage "139510" @default.
- W4384343796 abstract "This study utilizes artificial intelligence and statistical modelling to optimize the operating parameters of a carbon-based electro-Fenton process for purifying model dye (RB19)-contaminated wastewater. Multilevel experimental Box-Behken and uniform deisgns (BBD, UD) with four variables were analysed using polynomial regression analysis (PRA) and artificial neural networks (ANN), while the process optimisation was done using desirability function. For the given testing range but different design matrices and runs, both designs predicted a maximum RB19 removal (RB19-RR) of 90 ± 2.1% at lowest energy consumption (EC) of 0.44 ± 2.5 Wh, when voltage, Na2SO4, FeSO4, and time were maintained as follows: 4–5.3 V, 7–11 mM, 0.4–0.6 mM, and 35–40 min, respectively. All the design-model combinations portrayed the similar senitivity analysis revealing that RB19 degradation and EC are primarily influenced by electrolysis time and voltage. The performance assessment demonstrated that all the design-model combinations also excellently predicted for unseen conditions as the maximum root mean squared error (RMSE) value for RB19-RR was 4.07, while it was 0.072 for EC, however, BBD-ANN performance proved to be slightly better than others. Having ∼57% less experimentation, UD based models managed to accurately predict the results for unseen conditions as the statistical errors were quite insignificant, even in some cases, RMSE found to be less for UD compared to BBD elucidating the potential of uniform design as an alternative of conventional factorial designs. Nevertheless, the prediction accuracy is also dependent on modelling approach, as in some cases ANN failed to predict the response precisely specially when dealing with small data. Furthermore, techno-economic evaluation results spell out the efficacy of carbon felt based enhanced electro-Fenton process as promising environmental remediation technology and highlight its practical implication from view of operational cost." @default.
- W4384343796 created "2023-07-15" @default.
- W4384343796 creator A5006365615 @default.
- W4384343796 creator A5011438045 @default.
- W4384343796 creator A5032965358 @default.
- W4384343796 creator A5064903019 @default.
- W4384343796 creator A5076856330 @default.
- W4384343796 creator A5084957265 @default.
- W4384343796 creator A5091052169 @default.
- W4384343796 date "2023-10-01" @default.
- W4384343796 modified "2023-09-27" @default.
- W4384343796 title "Multiple design and modelling approaches for the optimisation of carbon felt electro-Fenton treatment of dye laden wastewater" @default.
- W4384343796 cites W1968098666 @default.
- W4384343796 cites W1969690258 @default.
- W4384343796 cites W1985600426 @default.
- W4384343796 cites W2031387644 @default.
- W4384343796 cites W2041266348 @default.
- W4384343796 cites W2065639856 @default.
- W4384343796 cites W2068643087 @default.
- W4384343796 cites W2073991174 @default.
- W4384343796 cites W2080824589 @default.
- W4384343796 cites W2082639695 @default.
- W4384343796 cites W2161053097 @default.
- W4384343796 cites W2335037683 @default.
- W4384343796 cites W2508930034 @default.
- W4384343796 cites W2515484370 @default.
- W4384343796 cites W2767979325 @default.
- W4384343796 cites W2782216341 @default.
- W4384343796 cites W2800072121 @default.
- W4384343796 cites W2804786059 @default.
- W4384343796 cites W2908183902 @default.
- W4384343796 cites W2970174906 @default.
- W4384343796 cites W3014819008 @default.
- W4384343796 cites W3018966198 @default.
- W4384343796 cites W3021202526 @default.
- W4384343796 cites W3037838560 @default.
- W4384343796 cites W3113013634 @default.
- W4384343796 cites W3114068877 @default.
- W4384343796 cites W3119524013 @default.
- W4384343796 cites W3125562242 @default.
- W4384343796 cites W3125806872 @default.
- W4384343796 cites W3151548748 @default.
- W4384343796 cites W3157149188 @default.
- W4384343796 cites W3165096024 @default.
- W4384343796 cites W3200675487 @default.
- W4384343796 cites W3211357341 @default.
- W4384343796 cites W4200429642 @default.
- W4384343796 cites W4223490352 @default.
- W4384343796 cites W4224983992 @default.
- W4384343796 cites W608402566 @default.
- W4384343796 doi "https://doi.org/10.1016/j.chemosphere.2023.139510" @default.
- W4384343796 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37454991" @default.
- W4384343796 hasPublicationYear "2023" @default.
- W4384343796 type Work @default.
- W4384343796 citedByCount "0" @default.
- W4384343796 crossrefType "journal-article" @default.
- W4384343796 hasAuthorship W4384343796A5006365615 @default.
- W4384343796 hasAuthorship W4384343796A5011438045 @default.
- W4384343796 hasAuthorship W4384343796A5032965358 @default.
- W4384343796 hasAuthorship W4384343796A5064903019 @default.
- W4384343796 hasAuthorship W4384343796A5076856330 @default.
- W4384343796 hasAuthorship W4384343796A5084957265 @default.
- W4384343796 hasAuthorship W4384343796A5091052169 @default.
- W4384343796 hasConcept C105795698 @default.
- W4384343796 hasConcept C119599485 @default.
- W4384343796 hasConcept C122383733 @default.
- W4384343796 hasConcept C127413603 @default.
- W4384343796 hasConcept C139945424 @default.
- W4384343796 hasConcept C165801399 @default.
- W4384343796 hasConcept C169222746 @default.
- W4384343796 hasConcept C186060115 @default.
- W4384343796 hasConcept C2779679103 @default.
- W4384343796 hasConcept C33923547 @default.
- W4384343796 hasConcept C39432304 @default.
- W4384343796 hasConcept C41008148 @default.
- W4384343796 hasConcept C528095902 @default.
- W4384343796 hasConcept C76155785 @default.
- W4384343796 hasConcept C86803240 @default.
- W4384343796 hasConcept C87717796 @default.
- W4384343796 hasConcept C94061648 @default.
- W4384343796 hasConceptScore W4384343796C105795698 @default.
- W4384343796 hasConceptScore W4384343796C119599485 @default.
- W4384343796 hasConceptScore W4384343796C122383733 @default.
- W4384343796 hasConceptScore W4384343796C127413603 @default.
- W4384343796 hasConceptScore W4384343796C139945424 @default.
- W4384343796 hasConceptScore W4384343796C165801399 @default.
- W4384343796 hasConceptScore W4384343796C169222746 @default.
- W4384343796 hasConceptScore W4384343796C186060115 @default.
- W4384343796 hasConceptScore W4384343796C2779679103 @default.
- W4384343796 hasConceptScore W4384343796C33923547 @default.
- W4384343796 hasConceptScore W4384343796C39432304 @default.
- W4384343796 hasConceptScore W4384343796C41008148 @default.
- W4384343796 hasConceptScore W4384343796C528095902 @default.
- W4384343796 hasConceptScore W4384343796C76155785 @default.
- W4384343796 hasConceptScore W4384343796C86803240 @default.
- W4384343796 hasConceptScore W4384343796C87717796 @default.
- W4384343796 hasConceptScore W4384343796C94061648 @default.
- W4384343796 hasFunder F4320321904 @default.