Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384343881> ?p ?o ?g. }
- W4384343881 endingPage "128441" @default.
- W4384343881 startingPage "128441" @default.
- W4384343881 abstract "Supercritical water gasification (SCWG) technology can convert biomass into hydrogen rich gas and biochar. Fluidized bed reactor is promising for the industrialization of this technology, and the reactor dynamic performance study is of great significance for its scaling up. However, current simulation studies mainly focus on steady-state analysis using Computational Fluid Dynamics (CFD) software, it is difficult to conduct dynamic study due to its high computational costs. To this end, a reactor network model (RNM) that accounts for the flow, heat transfer, and kinetic dynamics for fluidized bed reactor is firstly developed based on the partitioning theory, which can reduce the computation time of dynamic simulation from several days to seconds. Additionally, extensive open-loop simulations of the RNM are carried out to generate the dataset for the development of a recurrent neural network (RNN) model. Additionally, current studies mainly focus on open-loop simulation, closed loop optimization is absent. To this end, a framework for building a machine learning (ML) model and a ML-based nonlinear predictive control scheme is developed. Model predictive control (MPC) schemes based on the RNN model is used to optimize the SCWG process to achieve multiple objectives, such as maximizing hydrogen yield and carbon yield. The open loop simulation results demonstrate that H2 yield decreases from 0.00022 to 0.0002 kg s−1 with temperature reducing from 700 to 600 °C. To increase H2 yield to the setpoint, MPC increases temperature and mass flowrate to 708 °C and 417.57 kg h−1. Additionally, MPC increases carbon yield and minimizing CO2 yield by decreasing temperature to 475 °C and increasing mass flowrate to 407.38 kg h−1." @default.
- W4384343881 created "2023-07-15" @default.
- W4384343881 creator A5004325176 @default.
- W4384343881 creator A5015091824 @default.
- W4384343881 creator A5022890857 @default.
- W4384343881 creator A5033814890 @default.
- W4384343881 creator A5062615016 @default.
- W4384343881 date "2023-11-01" @default.
- W4384343881 modified "2023-09-23" @default.
- W4384343881 title "Predictive control of reactor network model using machine learning for hydrogen-rich gas and biochar poly-generation by biomass waste gasification in supercritical water" @default.
- W4384343881 cites W1264906276 @default.
- W4384343881 cites W1604264128 @default.
- W4384343881 cites W1986192969 @default.
- W4384343881 cites W1994629832 @default.
- W4384343881 cites W1994935630 @default.
- W4384343881 cites W2001203188 @default.
- W4384343881 cites W2001769907 @default.
- W4384343881 cites W2003621267 @default.
- W4384343881 cites W2005464984 @default.
- W4384343881 cites W2014025395 @default.
- W4384343881 cites W2018926284 @default.
- W4384343881 cites W2019222314 @default.
- W4384343881 cites W2024505009 @default.
- W4384343881 cites W2031824385 @default.
- W4384343881 cites W2038524628 @default.
- W4384343881 cites W2069855641 @default.
- W4384343881 cites W2091053706 @default.
- W4384343881 cites W2116170642 @default.
- W4384343881 cites W2123871098 @default.
- W4384343881 cites W2157352804 @default.
- W4384343881 cites W2200558567 @default.
- W4384343881 cites W2265848568 @default.
- W4384343881 cites W2314974237 @default.
- W4384343881 cites W2316131460 @default.
- W4384343881 cites W2333862675 @default.
- W4384343881 cites W2356152931 @default.
- W4384343881 cites W2402827844 @default.
- W4384343881 cites W2411646507 @default.
- W4384343881 cites W2527618477 @default.
- W4384343881 cites W2550172151 @default.
- W4384343881 cites W2567677894 @default.
- W4384343881 cites W2586461700 @default.
- W4384343881 cites W2810384668 @default.
- W4384343881 cites W2895117537 @default.
- W4384343881 cites W2898258446 @default.
- W4384343881 cites W2930971391 @default.
- W4384343881 cites W2946700905 @default.
- W4384343881 cites W2965678729 @default.
- W4384343881 cites W3113010729 @default.
- W4384343881 cites W3129879996 @default.
- W4384343881 cites W3160943970 @default.
- W4384343881 cites W3183728074 @default.
- W4384343881 cites W4221035375 @default.
- W4384343881 cites W4224125053 @default.
- W4384343881 cites W4282031925 @default.
- W4384343881 cites W4284691129 @default.
- W4384343881 cites W4285890896 @default.
- W4384343881 cites W4288886307 @default.
- W4384343881 cites W842763055 @default.
- W4384343881 doi "https://doi.org/10.1016/j.energy.2023.128441" @default.
- W4384343881 hasPublicationYear "2023" @default.
- W4384343881 type Work @default.
- W4384343881 citedByCount "0" @default.
- W4384343881 crossrefType "journal-article" @default.
- W4384343881 hasAuthorship W4384343881A5004325176 @default.
- W4384343881 hasAuthorship W4384343881A5015091824 @default.
- W4384343881 hasAuthorship W4384343881A5022890857 @default.
- W4384343881 hasAuthorship W4384343881A5033814890 @default.
- W4384343881 hasAuthorship W4384343881A5062615016 @default.
- W4384343881 hasConcept C111368507 @default.
- W4384343881 hasConcept C115540264 @default.
- W4384343881 hasConcept C118419359 @default.
- W4384343881 hasConcept C12302492 @default.
- W4384343881 hasConcept C127313418 @default.
- W4384343881 hasConcept C127413603 @default.
- W4384343881 hasConcept C134121241 @default.
- W4384343881 hasConcept C146978453 @default.
- W4384343881 hasConcept C154945302 @default.
- W4384343881 hasConcept C1633027 @default.
- W4384343881 hasConcept C172205157 @default.
- W4384343881 hasConcept C178790620 @default.
- W4384343881 hasConcept C185592680 @default.
- W4384343881 hasConcept C191897082 @default.
- W4384343881 hasConcept C192562407 @default.
- W4384343881 hasConcept C202189072 @default.
- W4384343881 hasConcept C2084832 @default.
- W4384343881 hasConcept C21880701 @default.
- W4384343881 hasConcept C2775924081 @default.
- W4384343881 hasConcept C39432304 @default.
- W4384343881 hasConcept C41008148 @default.
- W4384343881 hasConcept C512968161 @default.
- W4384343881 hasConcept C548081761 @default.
- W4384343881 hasConceptScore W4384343881C111368507 @default.
- W4384343881 hasConceptScore W4384343881C115540264 @default.
- W4384343881 hasConceptScore W4384343881C118419359 @default.
- W4384343881 hasConceptScore W4384343881C12302492 @default.
- W4384343881 hasConceptScore W4384343881C127313418 @default.
- W4384343881 hasConceptScore W4384343881C127413603 @default.