Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384345689> ?p ?o ?g. }
- W4384345689 abstract "Tools that alert developers about library vulnerabilities depend on accurate, up-to-date vulnerability databases which are maintained by security researchers. These databases record the libraries related to each vulnerability. However, the vulnerability reports may not explicitly list every library and human analysis is required to determine all the relevant libraries. Human analysis may be slow and expensive, which motivates the need for automated approaches. Researchers and practitioners have proposed to automatically identify libraries from vulnerability reports using extreme multi-label learning (XML). While state-of-the-art XML techniques showed promising performance, their experimental settings do not practically fit what happens in reality. Previous studies randomly split the vulnerability reports data for training and testing their models without considering the chronological order of the reports. This may unduly train the models on chronologically newer reports while testing the models on chronologically older ones. However, in practice, one often receives chronologically new reports, which may be related to previously unseen libraries. Under this practical setting, we observe that the performance of current XML techniques declines substantially, e.g., F1 decreased from 0.7 to 0.24 under experiments without and with consideration of chronological order of vulnerability reports. We propose a practical library identification approach, namely Chronos, based on zero-shot learning. The novelty of Chronos is three-fold. First, Chronos fits into the practical pipeline by considering the chronological order of vulnerability reports. Second, Chronos enriches the data of the vulnerability descriptions and labels using a carefully designed data enhancement step. Third, Chronos exploits the temporal ordering of the vulnerability reports using a cache to prioritize prediction of versions of libraries that recently had reports of vulnerabilities. In our experiments, Chronos achieves an average F1-score of 0.75, 3x better than the best XML-based approach. Data enhancement and the time-aware adjustment improve Chronos over the vanilla zero-shot learning model by 27% in average F1." @default.
- W4384345689 created "2023-07-15" @default.
- W4384345689 creator A5009224648 @default.
- W4384345689 creator A5013306670 @default.
- W4384345689 creator A5016180477 @default.
- W4384345689 creator A5027335548 @default.
- W4384345689 creator A5037143426 @default.
- W4384345689 creator A5075260906 @default.
- W4384345689 creator A5081036622 @default.
- W4384345689 creator A5092472974 @default.
- W4384345689 date "2023-05-01" @default.
- W4384345689 modified "2023-09-26" @default.
- W4384345689 title "CHRONOS: Time-Aware Zero-Shot Identification of Libraries from Vulnerability Reports" @default.
- W4384345689 cites W1971733255 @default.
- W4384345689 cites W1973681806 @default.
- W4384345689 cites W2068074736 @default.
- W4384345689 cites W2085925880 @default.
- W4384345689 cites W2128737833 @default.
- W4384345689 cites W2160528879 @default.
- W4384345689 cites W2165747537 @default.
- W4384345689 cites W2408181256 @default.
- W4384345689 cites W2514084604 @default.
- W4384345689 cites W2740130862 @default.
- W4384345689 cites W2740329368 @default.
- W4384345689 cites W2767231363 @default.
- W4384345689 cites W2767521898 @default.
- W4384345689 cites W2789570312 @default.
- W4384345689 cites W2795516572 @default.
- W4384345689 cites W2899369852 @default.
- W4384345689 cites W2910453440 @default.
- W4384345689 cites W2963748706 @default.
- W4384345689 cites W2981912627 @default.
- W4384345689 cites W2982413960 @default.
- W4384345689 cites W3022320810 @default.
- W4384345689 cites W3040158574 @default.
- W4384345689 cites W3090843874 @default.
- W4384345689 cites W3091102523 @default.
- W4384345689 cites W3095209159 @default.
- W4384345689 cites W3099095494 @default.
- W4384345689 cites W3121596715 @default.
- W4384345689 cites W3145506869 @default.
- W4384345689 cites W3150814957 @default.
- W4384345689 cites W3159300567 @default.
- W4384345689 cites W3162044134 @default.
- W4384345689 cites W3165920028 @default.
- W4384345689 cites W3175545355 @default.
- W4384345689 cites W3177232285 @default.
- W4384345689 cites W3178061567 @default.
- W4384345689 cites W3198845576 @default.
- W4384345689 cites W3217524179 @default.
- W4384345689 cites W4206443035 @default.
- W4384345689 cites W4210493608 @default.
- W4384345689 cites W4210556785 @default.
- W4384345689 cites W4220988989 @default.
- W4384345689 cites W4232728046 @default.
- W4384345689 cites W4284709537 @default.
- W4384345689 cites W4285490369 @default.
- W4384345689 cites W4286331368 @default.
- W4384345689 cites W4288079339 @default.
- W4384345689 cites W4308643023 @default.
- W4384345689 cites W4313195722 @default.
- W4384345689 cites W97540112 @default.
- W4384345689 doi "https://doi.org/10.1109/icse48619.2023.00094" @default.
- W4384345689 hasPublicationYear "2023" @default.
- W4384345689 type Work @default.
- W4384345689 citedByCount "0" @default.
- W4384345689 crossrefType "proceedings-article" @default.
- W4384345689 hasAuthorship W4384345689A5009224648 @default.
- W4384345689 hasAuthorship W4384345689A5013306670 @default.
- W4384345689 hasAuthorship W4384345689A5016180477 @default.
- W4384345689 hasAuthorship W4384345689A5027335548 @default.
- W4384345689 hasAuthorship W4384345689A5037143426 @default.
- W4384345689 hasAuthorship W4384345689A5075260906 @default.
- W4384345689 hasAuthorship W4384345689A5081036622 @default.
- W4384345689 hasAuthorship W4384345689A5092472974 @default.
- W4384345689 hasBestOaLocation W43843456892 @default.
- W4384345689 hasConcept C116834253 @default.
- W4384345689 hasConcept C136764020 @default.
- W4384345689 hasConcept C137176749 @default.
- W4384345689 hasConcept C138885662 @default.
- W4384345689 hasConcept C15744967 @default.
- W4384345689 hasConcept C165696696 @default.
- W4384345689 hasConcept C167063184 @default.
- W4384345689 hasConcept C23123220 @default.
- W4384345689 hasConcept C2522767166 @default.
- W4384345689 hasConcept C27206212 @default.
- W4384345689 hasConcept C2778738651 @default.
- W4384345689 hasConcept C38652104 @default.
- W4384345689 hasConcept C41008148 @default.
- W4384345689 hasConcept C542102704 @default.
- W4384345689 hasConcept C59822182 @default.
- W4384345689 hasConcept C86803240 @default.
- W4384345689 hasConcept C8797682 @default.
- W4384345689 hasConcept C95713431 @default.
- W4384345689 hasConceptScore W4384345689C116834253 @default.
- W4384345689 hasConceptScore W4384345689C136764020 @default.
- W4384345689 hasConceptScore W4384345689C137176749 @default.
- W4384345689 hasConceptScore W4384345689C138885662 @default.
- W4384345689 hasConceptScore W4384345689C15744967 @default.
- W4384345689 hasConceptScore W4384345689C165696696 @default.