Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384346310> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4384346310 endingPage "212" @default.
- W4384346310 startingPage "201" @default.
- W4384346310 abstract "The job-shop scheduling problem (JSP), as an NP-hard problem, is widely applied in real-world production scheduling problems, such as assembly plants, chemical production, and semiconductor production. Although some deep reinforcement learning (DRL) methods for scheduling problems are recently developed, these methods are limited to tackling various-size problems. For this purpose, we propose a DRL method with an attention model to solve JSP. We formulate JSP as a Markovian decision process and design a size-agnostic policy network based on an attention model. Experimental results show that our method can automatically produce a dispatching scheme for various-size JSP without any expert knowledge, which surpasses traditional priority dispatching rules and the state-of-the-art DRL method." @default.
- W4384346310 created "2023-07-15" @default.
- W4384346310 creator A5041503339 @default.
- W4384346310 creator A5050478541 @default.
- W4384346310 creator A5059646505 @default.
- W4384346310 date "2023-01-01" @default.
- W4384346310 modified "2023-10-18" @default.
- W4384346310 title "Solving Job-Shop Scheduling Problem via Deep Reinforcement Learning with Attention Model" @default.
- W4384346310 cites W1976618788 @default.
- W4384346310 cites W2049967755 @default.
- W4384346310 cites W2067860534 @default.
- W4384346310 cites W2156391157 @default.
- W4384346310 cites W2157846217 @default.
- W4384346310 cites W2166928920 @default.
- W4384346310 cites W2170428215 @default.
- W4384346310 cites W2807766588 @default.
- W4384346310 cites W2892315936 @default.
- W4384346310 cites W2921116154 @default.
- W4384346310 cites W3036481609 @default.
- W4384346310 cites W3042915245 @default.
- W4384346310 cites W3045574728 @default.
- W4384346310 cites W3114288607 @default.
- W4384346310 cites W3128766876 @default.
- W4384346310 cites W3136037938 @default.
- W4384346310 cites W4213211863 @default.
- W4384346310 cites W4226230002 @default.
- W4384346310 cites W4281395180 @default.
- W4384346310 cites W4309676937 @default.
- W4384346310 doi "https://doi.org/10.1007/978-3-031-36822-6_18" @default.
- W4384346310 hasPublicationYear "2023" @default.
- W4384346310 type Work @default.
- W4384346310 citedByCount "0" @default.
- W4384346310 crossrefType "book-chapter" @default.
- W4384346310 hasAuthorship W4384346310A5041503339 @default.
- W4384346310 hasAuthorship W4384346310A5050478541 @default.
- W4384346310 hasAuthorship W4384346310A5059646505 @default.
- W4384346310 hasConcept C105795698 @default.
- W4384346310 hasConcept C106189395 @default.
- W4384346310 hasConcept C120314980 @default.
- W4384346310 hasConcept C126255220 @default.
- W4384346310 hasConcept C127413603 @default.
- W4384346310 hasConcept C13736549 @default.
- W4384346310 hasConcept C154945302 @default.
- W4384346310 hasConcept C158336966 @default.
- W4384346310 hasConcept C159886148 @default.
- W4384346310 hasConcept C206729178 @default.
- W4384346310 hasConcept C2777243215 @default.
- W4384346310 hasConcept C31258907 @default.
- W4384346310 hasConcept C33923547 @default.
- W4384346310 hasConcept C41008148 @default.
- W4384346310 hasConcept C42475967 @default.
- W4384346310 hasConcept C55416958 @default.
- W4384346310 hasConcept C74172769 @default.
- W4384346310 hasConcept C97541855 @default.
- W4384346310 hasConceptScore W4384346310C105795698 @default.
- W4384346310 hasConceptScore W4384346310C106189395 @default.
- W4384346310 hasConceptScore W4384346310C120314980 @default.
- W4384346310 hasConceptScore W4384346310C126255220 @default.
- W4384346310 hasConceptScore W4384346310C127413603 @default.
- W4384346310 hasConceptScore W4384346310C13736549 @default.
- W4384346310 hasConceptScore W4384346310C154945302 @default.
- W4384346310 hasConceptScore W4384346310C158336966 @default.
- W4384346310 hasConceptScore W4384346310C159886148 @default.
- W4384346310 hasConceptScore W4384346310C206729178 @default.
- W4384346310 hasConceptScore W4384346310C2777243215 @default.
- W4384346310 hasConceptScore W4384346310C31258907 @default.
- W4384346310 hasConceptScore W4384346310C33923547 @default.
- W4384346310 hasConceptScore W4384346310C41008148 @default.
- W4384346310 hasConceptScore W4384346310C42475967 @default.
- W4384346310 hasConceptScore W4384346310C55416958 @default.
- W4384346310 hasConceptScore W4384346310C74172769 @default.
- W4384346310 hasConceptScore W4384346310C97541855 @default.
- W4384346310 hasLocation W43843463101 @default.
- W4384346310 hasOpenAccess W4384346310 @default.
- W4384346310 hasPrimaryLocation W43843463101 @default.
- W4384346310 hasRelatedWork W2022848409 @default.
- W4384346310 hasRelatedWork W2153642003 @default.
- W4384346310 hasRelatedWork W2890170050 @default.
- W4384346310 hasRelatedWork W2905064436 @default.
- W4384346310 hasRelatedWork W2997605941 @default.
- W4384346310 hasRelatedWork W3005944338 @default.
- W4384346310 hasRelatedWork W3212584892 @default.
- W4384346310 hasRelatedWork W4296626303 @default.
- W4384346310 hasRelatedWork W4312811232 @default.
- W4384346310 hasRelatedWork W2152918703 @default.
- W4384346310 isParatext "false" @default.
- W4384346310 isRetracted "false" @default.
- W4384346310 workType "book-chapter" @default.