Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384346714> ?p ?o ?g. }
- W4384346714 endingPage "5038" @default.
- W4384346714 startingPage "5025" @default.
- W4384346714 abstract "<abstract><p>In the field of state-of-the-art object detection, the task of object localization is typically accomplished through a dedicated subnet that emphasizes bounding box regression. This subnet traditionally predicts the object's position by regressing the box's center position and scaling factors. Despite the widespread adoption of this approach, we have observed that the localization results often suffer from defects, leading to unsatisfactory detector performance. In this paper, we address the shortcomings of previous methods through theoretical analysis and experimental verification and present an innovative solution for precise object detection. Instead of solely focusing on the object's center and size, our approach enhances the accuracy of bounding box localization by refining the box edges based on the estimated distribution at the object's boundary. Experimental results demonstrate the potential and generalizability of our proposed method.</p></abstract>" @default.
- W4384346714 created "2023-07-15" @default.
- W4384346714 creator A5002500632 @default.
- W4384346714 creator A5002725824 @default.
- W4384346714 creator A5032749574 @default.
- W4384346714 creator A5053505040 @default.
- W4384346714 creator A5069159378 @default.
- W4384346714 creator A5078304976 @default.
- W4384346714 date "2023-01-01" @default.
- W4384346714 modified "2023-09-25" @default.
- W4384346714 title "Boundary distribution estimation for precise object detection" @default.
- W4384346714 cites W1197165690 @default.
- W4384346714 cites W1910619957 @default.
- W4384346714 cites W1930528368 @default.
- W4384346714 cites W2003370853 @default.
- W4384346714 cites W2037227137 @default.
- W4384346714 cites W2071356085 @default.
- W4384346714 cites W2110158442 @default.
- W4384346714 cites W2117539524 @default.
- W4384346714 cites W2119823327 @default.
- W4384346714 cites W2129587342 @default.
- W4384346714 cites W2145023731 @default.
- W4384346714 cites W2151049637 @default.
- W4384346714 cites W2582040118 @default.
- W4384346714 cites W2601564443 @default.
- W4384346714 cites W2806070179 @default.
- W4384346714 cites W2886335102 @default.
- W4384346714 cites W2896320980 @default.
- W4384346714 cites W2920326761 @default.
- W4384346714 cites W2963037989 @default.
- W4384346714 cites W2963351448 @default.
- W4384346714 cites W2982770724 @default.
- W4384346714 cites W3089423647 @default.
- W4384346714 cites W3102707396 @default.
- W4384346714 cites W3159885298 @default.
- W4384346714 cites W3205640189 @default.
- W4384346714 cites W4210598935 @default.
- W4384346714 cites W4292064796 @default.
- W4384346714 cites W4308516693 @default.
- W4384346714 cites W4312452284 @default.
- W4384346714 cites W639708223 @default.
- W4384346714 cites W845365781 @default.
- W4384346714 doi "https://doi.org/10.3934/era.2023257" @default.
- W4384346714 hasPublicationYear "2023" @default.
- W4384346714 type Work @default.
- W4384346714 citedByCount "0" @default.
- W4384346714 crossrefType "journal-article" @default.
- W4384346714 hasAuthorship W4384346714A5002500632 @default.
- W4384346714 hasAuthorship W4384346714A5002725824 @default.
- W4384346714 hasAuthorship W4384346714A5032749574 @default.
- W4384346714 hasAuthorship W4384346714A5053505040 @default.
- W4384346714 hasAuthorship W4384346714A5069159378 @default.
- W4384346714 hasAuthorship W4384346714A5078304976 @default.
- W4384346714 hasBestOaLocation W43843467141 @default.
- W4384346714 hasConcept C10138342 @default.
- W4384346714 hasConcept C105795698 @default.
- W4384346714 hasConcept C11413529 @default.
- W4384346714 hasConcept C115961682 @default.
- W4384346714 hasConcept C13280743 @default.
- W4384346714 hasConcept C134306372 @default.
- W4384346714 hasConcept C147037132 @default.
- W4384346714 hasConcept C153180895 @default.
- W4384346714 hasConcept C154945302 @default.
- W4384346714 hasConcept C162324750 @default.
- W4384346714 hasConcept C171268870 @default.
- W4384346714 hasConcept C185798385 @default.
- W4384346714 hasConcept C198082294 @default.
- W4384346714 hasConcept C199360897 @default.
- W4384346714 hasConcept C202444582 @default.
- W4384346714 hasConcept C205649164 @default.
- W4384346714 hasConcept C21099817 @default.
- W4384346714 hasConcept C2524010 @default.
- W4384346714 hasConcept C27158222 @default.
- W4384346714 hasConcept C2776151529 @default.
- W4384346714 hasConcept C2781238097 @default.
- W4384346714 hasConcept C31258907 @default.
- W4384346714 hasConcept C31972630 @default.
- W4384346714 hasConcept C33923547 @default.
- W4384346714 hasConcept C41008148 @default.
- W4384346714 hasConcept C62354387 @default.
- W4384346714 hasConcept C63584917 @default.
- W4384346714 hasConcept C76155785 @default.
- W4384346714 hasConcept C94915269 @default.
- W4384346714 hasConcept C9652623 @default.
- W4384346714 hasConcept C99844830 @default.
- W4384346714 hasConceptScore W4384346714C10138342 @default.
- W4384346714 hasConceptScore W4384346714C105795698 @default.
- W4384346714 hasConceptScore W4384346714C11413529 @default.
- W4384346714 hasConceptScore W4384346714C115961682 @default.
- W4384346714 hasConceptScore W4384346714C13280743 @default.
- W4384346714 hasConceptScore W4384346714C134306372 @default.
- W4384346714 hasConceptScore W4384346714C147037132 @default.
- W4384346714 hasConceptScore W4384346714C153180895 @default.
- W4384346714 hasConceptScore W4384346714C154945302 @default.
- W4384346714 hasConceptScore W4384346714C162324750 @default.
- W4384346714 hasConceptScore W4384346714C171268870 @default.
- W4384346714 hasConceptScore W4384346714C185798385 @default.
- W4384346714 hasConceptScore W4384346714C198082294 @default.