Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384347675> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4384347675 abstract "The current generation of cellular devices have plenty of processing power and storage, but they lag behind in terms of huge data storage and processing software. Big Data is referred to huge volumes of unstructured data generated by high-performance applications from scientific computers to social networks, e-government to medical information systems, and so on. According to recent big data study, the amount of data continues to grow at an exponential rate. A strong computing paradigm like Hadoop and Map-Reduce is required to process enormous amounts of data on computing clusters. The Map-Reduce framework is a programming technique that allows you to handle terabytes of data in a fraction of the time. Big data needs good scheduling in order to attain outstanding results. The Scheduling Technique is used to decrease hunger, enhance resource utilisation, and distribute work to available resources.For the Hadoop Map-Reduce model, various scheduling algorithm has been developed, which differs widely in design, behavior, and handling various issues. Existing resource allocation scheduling do not consider the weight of each job which leads to unbalanced performance among nodes. We focus on several issues of Hadoop Map reduce and introduce novel mechanism to handle and process the Big data. The proposed approach is divided into three phases such as implementation of optimized clustering scheme, improving the clustering scheme by implementation them in parallel manner and finally, incorporating machine learning and Fuzzy logic based intelligent techniques to adapt the big data changes to efficiently process the huge data.In first phase, we develop improved P-DBSCAN algorithm which uses Mapper and reducer programs in such a way so that input data points will get into the cluster formulation. The proposed approach consists of several stages such as data partitioning stage, local clustering stage, data merger stage and global cluster generation stage as final outcome. Moreover, two cluster optimization methods are included to improve the clustering performance. DBSCAN parallelization options are examined using the Spark platform built to maximize memory consumption and iterative processes. Single-node Spark and Spark cluster platforms have historically used distinct resource managers for DBSCAN optimization.In second stage, we adopt the concept of Hierarchical Clustering Algorithm and developed a novel clustering scheme to overcome the issues of DBSCAN. This scheme uses mapper and reducer entities. Mapper receives its copy of the input dataset. Labeling activities are carried out by the Mapper, such as finding the closest centroid to an individual data object. The reducer creates a new value for each centroid based on the items allocated to it in the current iteration of the algorithm. This is determined by evaluating the average of all of the data objects in each cluster. Later, K-Medoid method proposed utilizing medoids as the center of clusters since they can be influenced by outliers, although this is a disadvantage. It aims to reduce the cost between the cluster's non-medoids and its medoid.Finally, we focus on semantic relationship extraction between queries where we adopted neuro-fuzzy based hybrid technique and TF-IDF algorithm. In this thesis, we developed a hybrid approach by using Fuzzy logic and neural network to mine high fuzzy utility patterns. New fuzzy rules are defined based on 6 different criteria such as Query Time, Query Length, Query Expiry, Total Queries, CPU Usages, and Task activity. First of all, we perform the data pre-processing where several tasks are performed to filter the data, later, these queries are processed through the scheduler where fuzzy rule based is used and semantic relationship is established among queries. Based on the TF-IDF approach weight are computed from filtered data. The average runtime performance of these schemes is obtained as 167.5s, 137.5s, 51.25s, 37.5s, and 25s by using Apriori (M), HFUPM, Apriori, and EFUPM, Proposed Approach, respectively." @default.
- W4384347675 created "2023-07-15" @default.
- W4384347675 creator A5040952788 @default.
- W4384347675 creator A5069366483 @default.
- W4384347675 date "2022-12-01" @default.
- W4384347675 modified "2023-09-27" @default.
- W4384347675 title "A Novel Approach for Parallelized Clustering Model by Using Hadoop MapReduce Framework" @default.
- W4384347675 cites W1971022913 @default.
- W4384347675 cites W1992419399 @default.
- W4384347675 cites W1993041190 @default.
- W4384347675 cites W2028562168 @default.
- W4384347675 cites W2102105686 @default.
- W4384347675 cites W2111875105 @default.
- W4384347675 cites W2116762767 @default.
- W4384347675 cites W2118268275 @default.
- W4384347675 cites W2120438042 @default.
- W4384347675 cites W2123747287 @default.
- W4384347675 cites W2126337883 @default.
- W4384347675 cites W2132914434 @default.
- W4384347675 cites W2145758431 @default.
- W4384347675 cites W2152601912 @default.
- W4384347675 cites W2165232124 @default.
- W4384347675 cites W2185055242 @default.
- W4384347675 cites W2293942356 @default.
- W4384347675 cites W2542550679 @default.
- W4384347675 cites W2894607638 @default.
- W4384347675 doi "https://doi.org/10.1109/icwite57052.2022.10176257" @default.
- W4384347675 hasPublicationYear "2022" @default.
- W4384347675 type Work @default.
- W4384347675 citedByCount "0" @default.
- W4384347675 crossrefType "proceedings-article" @default.
- W4384347675 hasAuthorship W4384347675A5040952788 @default.
- W4384347675 hasAuthorship W4384347675A5069366483 @default.
- W4384347675 hasConcept C111919701 @default.
- W4384347675 hasConcept C119857082 @default.
- W4384347675 hasConcept C120314980 @default.
- W4384347675 hasConcept C124101348 @default.
- W4384347675 hasConcept C159985019 @default.
- W4384347675 hasConcept C162324750 @default.
- W4384347675 hasConcept C192562407 @default.
- W4384347675 hasConcept C199360897 @default.
- W4384347675 hasConcept C199683683 @default.
- W4384347675 hasConcept C206729178 @default.
- W4384347675 hasConcept C21547014 @default.
- W4384347675 hasConcept C2778787235 @default.
- W4384347675 hasConcept C34165917 @default.
- W4384347675 hasConcept C41008148 @default.
- W4384347675 hasConcept C73555534 @default.
- W4384347675 hasConcept C75684735 @default.
- W4384347675 hasConceptScore W4384347675C111919701 @default.
- W4384347675 hasConceptScore W4384347675C119857082 @default.
- W4384347675 hasConceptScore W4384347675C120314980 @default.
- W4384347675 hasConceptScore W4384347675C124101348 @default.
- W4384347675 hasConceptScore W4384347675C159985019 @default.
- W4384347675 hasConceptScore W4384347675C162324750 @default.
- W4384347675 hasConceptScore W4384347675C192562407 @default.
- W4384347675 hasConceptScore W4384347675C199360897 @default.
- W4384347675 hasConceptScore W4384347675C199683683 @default.
- W4384347675 hasConceptScore W4384347675C206729178 @default.
- W4384347675 hasConceptScore W4384347675C21547014 @default.
- W4384347675 hasConceptScore W4384347675C2778787235 @default.
- W4384347675 hasConceptScore W4384347675C34165917 @default.
- W4384347675 hasConceptScore W4384347675C41008148 @default.
- W4384347675 hasConceptScore W4384347675C73555534 @default.
- W4384347675 hasConceptScore W4384347675C75684735 @default.
- W4384347675 hasLocation W43843476751 @default.
- W4384347675 hasOpenAccess W4384347675 @default.
- W4384347675 hasPrimaryLocation W43843476751 @default.
- W4384347675 hasRelatedWork W1882733036 @default.
- W4384347675 hasRelatedWork W1992741870 @default.
- W4384347675 hasRelatedWork W2064883676 @default.
- W4384347675 hasRelatedWork W2160425906 @default.
- W4384347675 hasRelatedWork W2546696010 @default.
- W4384347675 hasRelatedWork W3109856881 @default.
- W4384347675 hasRelatedWork W4226091590 @default.
- W4384347675 hasRelatedWork W4320025244 @default.
- W4384347675 hasRelatedWork W4384347675 @default.
- W4384347675 hasRelatedWork W79970639 @default.
- W4384347675 isParatext "false" @default.
- W4384347675 isRetracted "false" @default.
- W4384347675 workType "article" @default.