Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384347685> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4384347685 abstract "The neuropsychological battery of scores and Functional Activities Questionnaire (FAQ) are significant to measure the cognitive and functional domain of the patients affected by Alzheimer's Disease. These scores collected from the National Alzheimer's Coordinating Centre are pre-processed to obtain instances with the minimum of four visit times. Thus, we obtain visit-1 to visit-4 data with 5542 instances after pre-processing. The feature selection (Genetic Algorithm) is applied to visit-1 and visit-4 data and evaluated the performance by using Logistic Regression Model before and after imputation and as well as before and after imbalanced data handling technique. The metrics considered for evaluating the performance of Genetic Algorithm (GA) are Area Under Curve (AUC), Mean Squared Error (MSE) and accuracy. The improved performance of GA is obtained for the neuropsychological scores after Miss Forest Imputation and for FAQ scores after subjecting it to Synthetic Minority Oversampling Technique (SMOTE). In the second work, data of visit-1 instances is normalized by z score normalization and these are further subjected to different optimization techniques. All the optimization techniques are evaluated by using Random Forest, Bagging, Naïve Bayes and Logistic Regression classifier models and the performance are evaluated by using Area Under Curve (AUC) as the metric. From the results obtained, we infer the Particle Swarm Optimization shows the better performance than the other optimization techniques. Later in the third work, we proposed a framework for binary and multiclass classification of Alzheimer's Disease (AD) using three-dimensional Structural Magnetic Resonance Images (sMRI) and clinical scores from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The collected images are subjected to skull stripping, noise removal and tissue segmentation. The three-dimensional Gray Matter tissue, obtained as an output from tissue segmentation, comprises of many two-dimensional slices. But processing and training all the slices requires a lot of computational time. Therefore, our aim is to employ Convolutional Neural Network only on the significant slices and also to report the performance of the model. We propose a slice selection technique based on Shannon entropy to pick anatomically significant slices. Experimental results prove that the proposed slice selection classification framework achieves better performance when fused with clinical score. In the last work, we carried out our studies by collecting the images of Magnetic Resonance Imaging (MRI) from the Open Access Series of Imaging Studies (OASIS) database and categorized MRI images into three different groups based on the size of a ventricular region of the brain and then employed second and higher order statistical methods to extract the textural features from each image. Then the retrieval performance is compared for the extracted texture features from GLCM, Laws Texture Energy Measure and a combination of these two methods. The combination of features from the above methods shows the better precision of 80% and 60 % in the retrieval of Group1 and Group3 images." @default.
- W4384347685 created "2023-07-15" @default.
- W4384347685 creator A5016896799 @default.
- W4384347685 creator A5070493647 @default.
- W4384347685 date "2022-12-01" @default.
- W4384347685 modified "2023-10-17" @default.
- W4384347685 title "Efficient Data Mining Techniques for Handling Neurodegenerative Disorder" @default.
- W4384347685 cites W1974874858 @default.
- W4384347685 cites W2020293494 @default.
- W4384347685 cites W2038463584 @default.
- W4384347685 cites W2062550323 @default.
- W4384347685 cites W2072343128 @default.
- W4384347685 cites W2096410114 @default.
- W4384347685 cites W2260677129 @default.
- W4384347685 cites W2261159287 @default.
- W4384347685 cites W2281104899 @default.
- W4384347685 cites W2320074967 @default.
- W4384347685 cites W2322424401 @default.
- W4384347685 cites W2524662608 @default.
- W4384347685 cites W2559903050 @default.
- W4384347685 cites W2618373950 @default.
- W4384347685 cites W2683833049 @default.
- W4384347685 cites W2753647903 @default.
- W4384347685 cites W2793804994 @default.
- W4384347685 cites W2808744601 @default.
- W4384347685 cites W2871230106 @default.
- W4384347685 cites W2901769786 @default.
- W4384347685 cites W2907148404 @default.
- W4384347685 cites W2922045303 @default.
- W4384347685 doi "https://doi.org/10.1109/icwite57052.2022.10176207" @default.
- W4384347685 hasPublicationYear "2022" @default.
- W4384347685 type Work @default.
- W4384347685 citedByCount "0" @default.
- W4384347685 crossrefType "proceedings-article" @default.
- W4384347685 hasAuthorship W4384347685A5016896799 @default.
- W4384347685 hasAuthorship W4384347685A5070493647 @default.
- W4384347685 hasConcept C105795698 @default.
- W4384347685 hasConcept C119857082 @default.
- W4384347685 hasConcept C12267149 @default.
- W4384347685 hasConcept C124101348 @default.
- W4384347685 hasConcept C139945424 @default.
- W4384347685 hasConcept C148483581 @default.
- W4384347685 hasConcept C151956035 @default.
- W4384347685 hasConcept C153180895 @default.
- W4384347685 hasConcept C154945302 @default.
- W4384347685 hasConcept C162324750 @default.
- W4384347685 hasConcept C169258074 @default.
- W4384347685 hasConcept C187736073 @default.
- W4384347685 hasConcept C197323446 @default.
- W4384347685 hasConcept C2776257435 @default.
- W4384347685 hasConcept C2780898871 @default.
- W4384347685 hasConcept C31258907 @default.
- W4384347685 hasConcept C33923547 @default.
- W4384347685 hasConcept C41008148 @default.
- W4384347685 hasConcept C52001869 @default.
- W4384347685 hasConcept C66905080 @default.
- W4384347685 hasConcept C85617194 @default.
- W4384347685 hasConceptScore W4384347685C105795698 @default.
- W4384347685 hasConceptScore W4384347685C119857082 @default.
- W4384347685 hasConceptScore W4384347685C12267149 @default.
- W4384347685 hasConceptScore W4384347685C124101348 @default.
- W4384347685 hasConceptScore W4384347685C139945424 @default.
- W4384347685 hasConceptScore W4384347685C148483581 @default.
- W4384347685 hasConceptScore W4384347685C151956035 @default.
- W4384347685 hasConceptScore W4384347685C153180895 @default.
- W4384347685 hasConceptScore W4384347685C154945302 @default.
- W4384347685 hasConceptScore W4384347685C162324750 @default.
- W4384347685 hasConceptScore W4384347685C169258074 @default.
- W4384347685 hasConceptScore W4384347685C187736073 @default.
- W4384347685 hasConceptScore W4384347685C197323446 @default.
- W4384347685 hasConceptScore W4384347685C2776257435 @default.
- W4384347685 hasConceptScore W4384347685C2780898871 @default.
- W4384347685 hasConceptScore W4384347685C31258907 @default.
- W4384347685 hasConceptScore W4384347685C33923547 @default.
- W4384347685 hasConceptScore W4384347685C41008148 @default.
- W4384347685 hasConceptScore W4384347685C52001869 @default.
- W4384347685 hasConceptScore W4384347685C66905080 @default.
- W4384347685 hasConceptScore W4384347685C85617194 @default.
- W4384347685 hasLocation W43843476851 @default.
- W4384347685 hasOpenAccess W4384347685 @default.
- W4384347685 hasPrimaryLocation W43843476851 @default.
- W4384347685 hasRelatedWork W3121644786 @default.
- W4384347685 hasRelatedWork W3204641204 @default.
- W4384347685 hasRelatedWork W4206809268 @default.
- W4384347685 hasRelatedWork W4212852473 @default.
- W4384347685 hasRelatedWork W4225360065 @default.
- W4384347685 hasRelatedWork W4226324856 @default.
- W4384347685 hasRelatedWork W4292651891 @default.
- W4384347685 hasRelatedWork W4319718059 @default.
- W4384347685 hasRelatedWork W4322008322 @default.
- W4384347685 hasRelatedWork W4384347685 @default.
- W4384347685 isParatext "false" @default.
- W4384347685 isRetracted "false" @default.
- W4384347685 workType "article" @default.