Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384347782> ?p ?o ?g. }
- W4384347782 abstract "The healthcare industry greatly benefits from the use of data mining techniques. Data volume rises as medical record systems standardize, with much of it going unanalyzed. The study’s goal is to identify the factors that contribute to the prevalence of diabetes while taking into consideration those factors. For the examination of the diabetes database in this study, WEKA, an open-source data mining tool, is employed. To categorize the data, classification algorithms are used. The data is then tested using 10-fold cross-validation, and the outcomes are compared. A target variable called Outcome and several medical predictor factors make up the datasets. The number of pregnancies the patient has had, their BMI, insulin level, age, and other factors are predictor variables. This dataset was obtained from the National Institute of Diabetes and Digestive and Kidney Diseases. The dataset aims to diagnostically predict whether or not a patient has diabetes based on particular diagnostic metrics available in the information. There were some restrictions on how these instances were chosen from a larger database. In particular, Pima Indian women who are at least 21 years old make up every patient in this facility. In this study, we used a variety of classifiers in the Python and Weka programming environments for machine learning to predict the outcome after classification while comparing the classifiers’ levels of accuracy confidence." @default.
- W4384347782 created "2023-07-15" @default.
- W4384347782 creator A5000019246 @default.
- W4384347782 creator A5008513921 @default.
- W4384347782 creator A5033955971 @default.
- W4384347782 creator A5049727818 @default.
- W4384347782 creator A5082410462 @default.
- W4384347782 creator A5051023882 @default.
- W4384347782 date "2022-12-01" @default.
- W4384347782 modified "2023-10-18" @default.
- W4384347782 title "Comparative Analysis of Machine Learning and Data Mining based Multi-Models for Diabetes Risk Prediction" @default.
- W4384347782 cites W1797778684 @default.
- W4384347782 cites W1911869199 @default.
- W4384347782 cites W1970916522 @default.
- W4384347782 cites W2044440798 @default.
- W4384347782 cites W2049008806 @default.
- W4384347782 cites W2055204629 @default.
- W4384347782 cites W2116836854 @default.
- W4384347782 cites W2194485507 @default.
- W4384347782 cites W2902702928 @default.
- W4384347782 cites W2905199611 @default.
- W4384347782 cites W2906600767 @default.
- W4384347782 cites W2954743925 @default.
- W4384347782 cites W2963986685 @default.
- W4384347782 cites W2974806515 @default.
- W4384347782 cites W2979481925 @default.
- W4384347782 cites W2980115263 @default.
- W4384347782 cites W2985328577 @default.
- W4384347782 cites W2991751580 @default.
- W4384347782 cites W2994636377 @default.
- W4384347782 cites W3005969021 @default.
- W4384347782 cites W3024708568 @default.
- W4384347782 cites W3035150372 @default.
- W4384347782 cites W3036855268 @default.
- W4384347782 cites W3047452085 @default.
- W4384347782 cites W3049181074 @default.
- W4384347782 cites W3087316426 @default.
- W4384347782 cites W3114510630 @default.
- W4384347782 cites W3115676662 @default.
- W4384347782 cites W3115778483 @default.
- W4384347782 cites W3127865703 @default.
- W4384347782 cites W3130449168 @default.
- W4384347782 cites W3134274385 @default.
- W4384347782 cites W3176707789 @default.
- W4384347782 cites W4200067306 @default.
- W4384347782 cites W4200238589 @default.
- W4384347782 cites W4212879471 @default.
- W4384347782 cites W4212966267 @default.
- W4384347782 cites W4213089406 @default.
- W4384347782 cites W4213240247 @default.
- W4384347782 cites W4214595570 @default.
- W4384347782 cites W4220757765 @default.
- W4384347782 cites W4220773055 @default.
- W4384347782 cites W4220859757 @default.
- W4384347782 cites W4220905153 @default.
- W4384347782 cites W4296349118 @default.
- W4384347782 doi "https://doi.org/10.1109/icwite57052.2022.10176232" @default.
- W4384347782 hasPublicationYear "2022" @default.
- W4384347782 type Work @default.
- W4384347782 citedByCount "0" @default.
- W4384347782 crossrefType "proceedings-article" @default.
- W4384347782 hasAuthorship W4384347782A5000019246 @default.
- W4384347782 hasAuthorship W4384347782A5008513921 @default.
- W4384347782 hasAuthorship W4384347782A5033955971 @default.
- W4384347782 hasAuthorship W4384347782A5049727818 @default.
- W4384347782 hasAuthorship W4384347782A5051023882 @default.
- W4384347782 hasAuthorship W4384347782A5082410462 @default.
- W4384347782 hasConcept C111919701 @default.
- W4384347782 hasConcept C119857082 @default.
- W4384347782 hasConcept C124101348 @default.
- W4384347782 hasConcept C134018914 @default.
- W4384347782 hasConcept C154945302 @default.
- W4384347782 hasConcept C41008148 @default.
- W4384347782 hasConcept C519991488 @default.
- W4384347782 hasConcept C555293320 @default.
- W4384347782 hasConcept C71924100 @default.
- W4384347782 hasConcept C94124525 @default.
- W4384347782 hasConceptScore W4384347782C111919701 @default.
- W4384347782 hasConceptScore W4384347782C119857082 @default.
- W4384347782 hasConceptScore W4384347782C124101348 @default.
- W4384347782 hasConceptScore W4384347782C134018914 @default.
- W4384347782 hasConceptScore W4384347782C154945302 @default.
- W4384347782 hasConceptScore W4384347782C41008148 @default.
- W4384347782 hasConceptScore W4384347782C519991488 @default.
- W4384347782 hasConceptScore W4384347782C555293320 @default.
- W4384347782 hasConceptScore W4384347782C71924100 @default.
- W4384347782 hasConceptScore W4384347782C94124525 @default.
- W4384347782 hasLocation W43843477821 @default.
- W4384347782 hasOpenAccess W4384347782 @default.
- W4384347782 hasPrimaryLocation W43843477821 @default.
- W4384347782 hasRelatedWork W2090215046 @default.
- W4384347782 hasRelatedWork W2365213443 @default.
- W4384347782 hasRelatedWork W2529681551 @default.
- W4384347782 hasRelatedWork W2891993883 @default.
- W4384347782 hasRelatedWork W2961085424 @default.
- W4384347782 hasRelatedWork W2979801952 @default.
- W4384347782 hasRelatedWork W4285815787 @default.
- W4384347782 hasRelatedWork W4312949351 @default.
- W4384347782 hasRelatedWork W4380086463 @default.
- W4384347782 hasRelatedWork W77035938 @default.