Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384389744> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4384389744 abstract "Corrosion has a wide impact on society, causing catastrophic damage to structurally engineered components. An emerging class of corrosion-resistant materials are high-entropy alloys. However, high-entropy alloys live in high-dimensional composition and configuration space, making materials designs via experimental trial-and-error or brute-force ab initio calculations almost impossible. Here we develop a physics-informed machine-learning framework to identify corrosion-resistant high-entropy alloys. Three metrics are used to evaluate the corrosion resistance, including single-phase formability, surface energy and Pilling-Bedworth ratios. We used random forest models to predict the single-phase formability, trained on an experimental dataset. Machine learning inter-atomic potentials were employed to calculate surface energies and Pilling-Bedworth ratios, which are trained on first-principles data fast sampled using embedded atom models. A combination of random forest models and high-fidelity machine learning potentials represents the first of its kind to relate chemical compositions to corrosion resistance of high-entropy alloys, paving the way for automatic design of materials with superior corrosion protection. This framework was demonstrated on AlCrFeCoNi high-entropy alloys and we identified composition regions with high corrosion resistance. Machine learning predicted lattice constants and surface energies are consistent with values by first-principles calculations. The predicted single-phase formability and corrosion-resistant compositions of AlCrFeCoNi agree well with experiments. This framework is general in its application and applicable to other materials, enabling high-throughput screening of material candidates and potentially reducing the turnaround time for integrated computational materials engineering." @default.
- W4384389744 created "2023-07-15" @default.
- W4384389744 creator A5016884283 @default.
- W4384389744 creator A5038251436 @default.
- W4384389744 creator A5064226287 @default.
- W4384389744 creator A5092474549 @default.
- W4384389744 date "2023-07-12" @default.
- W4384389744 modified "2023-09-26" @default.
- W4384389744 title "Machine learning accelerated discovery of corrosion-resistant high-entropy alloys" @default.
- W4384389744 doi "https://doi.org/10.48550/arxiv.2307.06384" @default.
- W4384389744 hasPublicationYear "2023" @default.
- W4384389744 type Work @default.
- W4384389744 citedByCount "0" @default.
- W4384389744 crossrefType "posted-content" @default.
- W4384389744 hasAuthorship W4384389744A5016884283 @default.
- W4384389744 hasAuthorship W4384389744A5038251436 @default.
- W4384389744 hasAuthorship W4384389744A5064226287 @default.
- W4384389744 hasAuthorship W4384389744A5092474549 @default.
- W4384389744 hasBestOaLocation W43843897441 @default.
- W4384389744 hasConcept C106301342 @default.
- W4384389744 hasConcept C119857082 @default.
- W4384389744 hasConcept C121332964 @default.
- W4384389744 hasConcept C169258074 @default.
- W4384389744 hasConcept C191897082 @default.
- W4384389744 hasConcept C192562407 @default.
- W4384389744 hasConcept C20625102 @default.
- W4384389744 hasConcept C2780299837 @default.
- W4384389744 hasConcept C41008148 @default.
- W4384389744 hasConcept C79127381 @default.
- W4384389744 hasConcept C87976508 @default.
- W4384389744 hasConcept C97355855 @default.
- W4384389744 hasConceptScore W4384389744C106301342 @default.
- W4384389744 hasConceptScore W4384389744C119857082 @default.
- W4384389744 hasConceptScore W4384389744C121332964 @default.
- W4384389744 hasConceptScore W4384389744C169258074 @default.
- W4384389744 hasConceptScore W4384389744C191897082 @default.
- W4384389744 hasConceptScore W4384389744C192562407 @default.
- W4384389744 hasConceptScore W4384389744C20625102 @default.
- W4384389744 hasConceptScore W4384389744C2780299837 @default.
- W4384389744 hasConceptScore W4384389744C41008148 @default.
- W4384389744 hasConceptScore W4384389744C79127381 @default.
- W4384389744 hasConceptScore W4384389744C87976508 @default.
- W4384389744 hasConceptScore W4384389744C97355855 @default.
- W4384389744 hasLocation W43843897441 @default.
- W4384389744 hasOpenAccess W4384389744 @default.
- W4384389744 hasPrimaryLocation W43843897441 @default.
- W4384389744 hasRelatedWork W2551817940 @default.
- W4384389744 hasRelatedWork W2610509641 @default.
- W4384389744 hasRelatedWork W2981050564 @default.
- W4384389744 hasRelatedWork W3048815034 @default.
- W4384389744 hasRelatedWork W3097783663 @default.
- W4384389744 hasRelatedWork W3135117324 @default.
- W4384389744 hasRelatedWork W4311687840 @default.
- W4384389744 hasRelatedWork W4366262926 @default.
- W4384389744 hasRelatedWork W4381850019 @default.
- W4384389744 hasRelatedWork W4384936918 @default.
- W4384389744 isParatext "false" @default.
- W4384389744 isRetracted "false" @default.
- W4384389744 workType "article" @default.