Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384389895> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4384389895 abstract "Regression algorithms are regularly used for improving the accuracy of satellite precipitation products. In this context, ground-based measurements are the dependent variable and the satellite data are the predictor variables, together with topography factors. Alongside this, it is increasingly recognised in many fields that combinations of algorithms through ensemble learning can lead to substantial predictive performance improvements. Still, a sufficient number of ensemble learners for improving the accuracy of satellite precipitation products and their large-scale comparison are currently missing from the literature. In this work, we fill this specific gap by proposing 11 new ensemble learners in the field and by extensively comparing them for the entire contiguous United States and for a 15-year period. We use monthly data from the PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) and IMERG (Integrated Multi-satellitE Retrievals for GPM) gridded datasets. We also use gauge-measured precipitation data from the Global Historical Climatology Network monthly database, version 2 (GHCNm). The ensemble learners combine the predictions by six regression algorithms (base learners), namely the multivariate adaptive regression splines (MARS), multivariate adaptive polynomial splines (poly-MARS), random forests (RF), gradient boosting machines (GBM), extreme gradient boosting (XGBoost) and Bayesian regularized neural networks (BRNN), and each of them is based on a different combiner. The combiners include the equal-weight combiner, the median combiner, two best learners and seven variants of a sophisticated stacking method. The latter stacks a regression algorithm on the top of the base learners to combine their independent predictions..." @default.
- W4384389895 created "2023-07-15" @default.
- W4384389895 creator A5003329348 @default.
- W4384389895 creator A5033117805 @default.
- W4384389895 creator A5045992049 @default.
- W4384389895 creator A5079420247 @default.
- W4384389895 date "2023-07-09" @default.
- W4384389895 modified "2023-09-24" @default.
- W4384389895 title "Ensemble learning for blending gridded satellite and gauge-measured precipitation data" @default.
- W4384389895 doi "https://doi.org/10.48550/arxiv.2307.06840" @default.
- W4384389895 hasPublicationYear "2023" @default.
- W4384389895 type Work @default.
- W4384389895 citedByCount "0" @default.
- W4384389895 crossrefType "posted-content" @default.
- W4384389895 hasAuthorship W4384389895A5003329348 @default.
- W4384389895 hasAuthorship W4384389895A5033117805 @default.
- W4384389895 hasAuthorship W4384389895A5045992049 @default.
- W4384389895 hasAuthorship W4384389895A5079420247 @default.
- W4384389895 hasBestOaLocation W43843898951 @default.
- W4384389895 hasConcept C105795698 @default.
- W4384389895 hasConcept C107054158 @default.
- W4384389895 hasConcept C119857082 @default.
- W4384389895 hasConcept C121332964 @default.
- W4384389895 hasConcept C127413603 @default.
- W4384389895 hasConcept C1276947 @default.
- W4384389895 hasConcept C146978453 @default.
- W4384389895 hasConcept C153294291 @default.
- W4384389895 hasConcept C154945302 @default.
- W4384389895 hasConcept C161584116 @default.
- W4384389895 hasConcept C169258074 @default.
- W4384389895 hasConcept C19269812 @default.
- W4384389895 hasConcept C205649164 @default.
- W4384389895 hasConcept C33923547 @default.
- W4384389895 hasConcept C39432304 @default.
- W4384389895 hasConcept C41008148 @default.
- W4384389895 hasConcept C44882253 @default.
- W4384389895 hasConcept C45942800 @default.
- W4384389895 hasConcept C46686674 @default.
- W4384389895 hasConcept C48921125 @default.
- W4384389895 hasConcept C50644808 @default.
- W4384389895 hasConcept C64946054 @default.
- W4384389895 hasConcept C70153297 @default.
- W4384389895 hasConcept C83260615 @default.
- W4384389895 hasConcept C83546350 @default.
- W4384389895 hasConceptScore W4384389895C105795698 @default.
- W4384389895 hasConceptScore W4384389895C107054158 @default.
- W4384389895 hasConceptScore W4384389895C119857082 @default.
- W4384389895 hasConceptScore W4384389895C121332964 @default.
- W4384389895 hasConceptScore W4384389895C127413603 @default.
- W4384389895 hasConceptScore W4384389895C1276947 @default.
- W4384389895 hasConceptScore W4384389895C146978453 @default.
- W4384389895 hasConceptScore W4384389895C153294291 @default.
- W4384389895 hasConceptScore W4384389895C154945302 @default.
- W4384389895 hasConceptScore W4384389895C161584116 @default.
- W4384389895 hasConceptScore W4384389895C169258074 @default.
- W4384389895 hasConceptScore W4384389895C19269812 @default.
- W4384389895 hasConceptScore W4384389895C205649164 @default.
- W4384389895 hasConceptScore W4384389895C33923547 @default.
- W4384389895 hasConceptScore W4384389895C39432304 @default.
- W4384389895 hasConceptScore W4384389895C41008148 @default.
- W4384389895 hasConceptScore W4384389895C44882253 @default.
- W4384389895 hasConceptScore W4384389895C45942800 @default.
- W4384389895 hasConceptScore W4384389895C46686674 @default.
- W4384389895 hasConceptScore W4384389895C48921125 @default.
- W4384389895 hasConceptScore W4384389895C50644808 @default.
- W4384389895 hasConceptScore W4384389895C64946054 @default.
- W4384389895 hasConceptScore W4384389895C70153297 @default.
- W4384389895 hasConceptScore W4384389895C83260615 @default.
- W4384389895 hasConceptScore W4384389895C83546350 @default.
- W4384389895 hasLocation W43843898951 @default.
- W4384389895 hasOpenAccess W4384389895 @default.
- W4384389895 hasPrimaryLocation W43843898951 @default.
- W4384389895 hasRelatedWork W2149476927 @default.
- W4384389895 hasRelatedWork W2896110774 @default.
- W4384389895 hasRelatedWork W3004959911 @default.
- W4384389895 hasRelatedWork W3100297620 @default.
- W4384389895 hasRelatedWork W3170398867 @default.
- W4384389895 hasRelatedWork W3208169454 @default.
- W4384389895 hasRelatedWork W4293069612 @default.
- W4384389895 hasRelatedWork W4298012357 @default.
- W4384389895 hasRelatedWork W4313906961 @default.
- W4384389895 hasRelatedWork W4375930479 @default.
- W4384389895 isParatext "false" @default.
- W4384389895 isRetracted "false" @default.
- W4384389895 workType "article" @default.