Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384406504> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4384406504 endingPage "396" @default.
- W4384406504 startingPage "381" @default.
- W4384406504 abstract "Breast cancer is a major cause of death among women in both developed and underdeveloped countries. Early detection and diagnosis of breast cancer are crucial for patients to receive proper treatment and increase their chances of survival. To improve the automatic detection and diagnosis of breast cancer, a new deep learning model called “Breast Cancer Prognosis Based Transfer Learning (BCP-TL)” has been developed. This model uses transfer learning, which applies the knowledge gained from solving one problem to another relevant problem. The model is based on a pre-trained convolutional neural network (CNN) that extracts features from the mammographic image analysis society (MIAS) dataset. Four different CNN architectures were used in thismodel: AlexNet, Xception, ResNeXt, and Channel Boosted CNN. The performance of the model was evaluated using six metrics, including accuracy, sensitivity, specificity, precision, F1-score, and the area under the ROC curve (AUC). The combination of Xception and Channel Boosted CNN showed excellent performance. By combining essential features from multiple iterations, the Channel Boosted CNN can achieve higher accuracy in breast cancer diagnosis, with an overall accuracy of 98.96%. This highlights the potential of the BCP-TL model in effectively detecting and diagnosing breast cancer." @default.
- W4384406504 created "2023-07-16" @default.
- W4384406504 creator A5007727177 @default.
- W4384406504 creator A5089353890 @default.
- W4384406504 date "2023-07-15" @default.
- W4384406504 modified "2023-10-01" @default.
- W4384406504 title "Breast Cancer Prognosis Based on Transfer Learning Techniques in Deep Neural Networks" @default.
- W4384406504 doi "https://doi.org/10.5755/j01.itc.52.2.33208" @default.
- W4384406504 hasPublicationYear "2023" @default.
- W4384406504 type Work @default.
- W4384406504 citedByCount "0" @default.
- W4384406504 crossrefType "journal-article" @default.
- W4384406504 hasAuthorship W4384406504A5007727177 @default.
- W4384406504 hasAuthorship W4384406504A5089353890 @default.
- W4384406504 hasBestOaLocation W43844065041 @default.
- W4384406504 hasConcept C108583219 @default.
- W4384406504 hasConcept C119857082 @default.
- W4384406504 hasConcept C121608353 @default.
- W4384406504 hasConcept C126322002 @default.
- W4384406504 hasConcept C150899416 @default.
- W4384406504 hasConcept C153180895 @default.
- W4384406504 hasConcept C154945302 @default.
- W4384406504 hasConcept C41008148 @default.
- W4384406504 hasConcept C50644808 @default.
- W4384406504 hasConcept C530470458 @default.
- W4384406504 hasConcept C71924100 @default.
- W4384406504 hasConcept C81363708 @default.
- W4384406504 hasConceptScore W4384406504C108583219 @default.
- W4384406504 hasConceptScore W4384406504C119857082 @default.
- W4384406504 hasConceptScore W4384406504C121608353 @default.
- W4384406504 hasConceptScore W4384406504C126322002 @default.
- W4384406504 hasConceptScore W4384406504C150899416 @default.
- W4384406504 hasConceptScore W4384406504C153180895 @default.
- W4384406504 hasConceptScore W4384406504C154945302 @default.
- W4384406504 hasConceptScore W4384406504C41008148 @default.
- W4384406504 hasConceptScore W4384406504C50644808 @default.
- W4384406504 hasConceptScore W4384406504C530470458 @default.
- W4384406504 hasConceptScore W4384406504C71924100 @default.
- W4384406504 hasConceptScore W4384406504C81363708 @default.
- W4384406504 hasIssue "2" @default.
- W4384406504 hasLocation W43844065041 @default.
- W4384406504 hasOpenAccess W4384406504 @default.
- W4384406504 hasPrimaryLocation W43844065041 @default.
- W4384406504 hasRelatedWork W2738221750 @default.
- W4384406504 hasRelatedWork W2997709384 @default.
- W4384406504 hasRelatedWork W3018421652 @default.
- W4384406504 hasRelatedWork W3021430260 @default.
- W4384406504 hasRelatedWork W3091976719 @default.
- W4384406504 hasRelatedWork W3189091156 @default.
- W4384406504 hasRelatedWork W3192840557 @default.
- W4384406504 hasRelatedWork W4362564549 @default.
- W4384406504 hasRelatedWork W4366224123 @default.
- W4384406504 hasRelatedWork W4382193078 @default.
- W4384406504 hasVolume "52" @default.
- W4384406504 isParatext "false" @default.
- W4384406504 isRetracted "false" @default.
- W4384406504 workType "article" @default.