Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384408028> ?p ?o ?g. }
- W4384408028 abstract "Microalgae's low tolerance to high CO2 concentrations presents a significant challenge for its industrial application, especially when considering the utilization of industrial exhaust gas streams with high CO2 content-an economically and environmentally attractive option. Therefore, the objectives of this study were to investigate the metabolic changes in carbon fixation and lipid accumulation of microalgae under ambient air and high CO2 conditions, deepen our understanding of the molecular mechanisms driving these processes, and identify potential target genes for metabolic engineering in microalgae. To accomplish these goals, we conducted a transcriptomic analysis of the high CO2-tolerant strain, Chlorella sp. ABC-001, under two different carbon dioxide levels (ambient air and 10% CO2) and at various growth phases.Cells cultivated with 10% CO2 exhibited significantly better growth and lipid accumulation rates, achieving up to 2.5-fold higher cell density and twice the lipid content by day 7. To understand the relationship between CO2 concentrations and phenotypes, transcriptomic analysis was conducted across different CO2 conditions and growth phases. According to the analysis of differentially expressed genes and gene ontology, Chlorella sp. ABC-001 exhibited the development of chloroplast organelles during the early exponential phase under high CO2 conditions, resulting in improved CO2 fixation and enhanced photosynthesis. Cobalamin-independent methionine synthase expression was also significantly elevated during the early growth stage, likely contributing to the methionine supply required for various metabolic activities and active proliferation. Conversely, the cells showed sustained repression of carbonic anhydrase and ferredoxin hydrogenase, involved in the carbon concentrating mechanism, throughout the cultivation period under high CO2 conditions. This study also delved into the transcriptomic profiles in the Calvin cycle, nitrogen reductase, and lipid synthesis. Particularly, Chlorella sp. ABC-001 showed high expression levels of genes involved in lipid synthesis, such as glycerol-3-phosphate dehydrogenase and phospholipid-diacylglycerol acyltransferase. These findings suggest potential targets for metabolic engineering aimed at enhancing lipid production in microalgae.We expect that our findings will help understand the carbon concentrating mechanism, photosynthesis, nitrogen assimilation, and lipid accumulation metabolisms of green algae according to CO2 concentrations. This study also provides insights into systems metabolic engineering of microalgae for improved performance in the future." @default.
- W4384408028 created "2023-07-16" @default.
- W4384408028 creator A5024977678 @default.
- W4384408028 creator A5027533100 @default.
- W4384408028 creator A5034074714 @default.
- W4384408028 creator A5075791483 @default.
- W4384408028 creator A5076702397 @default.
- W4384408028 creator A5091473274 @default.
- W4384408028 date "2023-07-15" @default.
- W4384408028 modified "2023-10-10" @default.
- W4384408028 title "Transcriptional insights into Chlorella sp. ABC-001: a comparative study of carbon fixation and lipid synthesis under different CO2 conditions" @default.
- W4384408028 cites W1486799529 @default.
- W4384408028 cites W162430827 @default.
- W4384408028 cites W1966008000 @default.
- W4384408028 cites W1968791661 @default.
- W4384408028 cites W2005193715 @default.
- W4384408028 cites W2017299163 @default.
- W4384408028 cites W2018443092 @default.
- W4384408028 cites W2034812064 @default.
- W4384408028 cites W2042115934 @default.
- W4384408028 cites W2049320585 @default.
- W4384408028 cites W2078333803 @default.
- W4384408028 cites W2107530302 @default.
- W4384408028 cites W2124932705 @default.
- W4384408028 cites W2127222573 @default.
- W4384408028 cites W2133766340 @default.
- W4384408028 cites W2146371682 @default.
- W4384408028 cites W2152239989 @default.
- W4384408028 cites W2156841387 @default.
- W4384408028 cites W2160969485 @default.
- W4384408028 cites W2168248474 @default.
- W4384408028 cites W2170551349 @default.
- W4384408028 cites W2181707686 @default.
- W4384408028 cites W2257802316 @default.
- W4384408028 cites W2288462917 @default.
- W4384408028 cites W2309000102 @default.
- W4384408028 cites W2318206418 @default.
- W4384408028 cites W2394611672 @default.
- W4384408028 cites W2396208827 @default.
- W4384408028 cites W2397049438 @default.
- W4384408028 cites W2526519631 @default.
- W4384408028 cites W2537720119 @default.
- W4384408028 cites W2549976854 @default.
- W4384408028 cites W2563196168 @default.
- W4384408028 cites W2621209759 @default.
- W4384408028 cites W2736033281 @default.
- W4384408028 cites W2761005439 @default.
- W4384408028 cites W2771797797 @default.
- W4384408028 cites W2785826958 @default.
- W4384408028 cites W2791495298 @default.
- W4384408028 cites W2796288665 @default.
- W4384408028 cites W2885943538 @default.
- W4384408028 cites W2895640716 @default.
- W4384408028 cites W2895682015 @default.
- W4384408028 cites W2917469795 @default.
- W4384408028 cites W2947783183 @default.
- W4384408028 cites W2948526484 @default.
- W4384408028 cites W2948661729 @default.
- W4384408028 cites W2970429516 @default.
- W4384408028 cites W2970819445 @default.
- W4384408028 cites W2971430891 @default.
- W4384408028 cites W3007851816 @default.
- W4384408028 cites W3028339083 @default.
- W4384408028 cites W3040291307 @default.
- W4384408028 cites W3085927212 @default.
- W4384408028 cites W3093004803 @default.
- W4384408028 cites W3107923625 @default.
- W4384408028 cites W3118556292 @default.
- W4384408028 cites W3130316309 @default.
- W4384408028 cites W3159995035 @default.
- W4384408028 cites W3165444992 @default.
- W4384408028 cites W3171312811 @default.
- W4384408028 cites W3205904952 @default.
- W4384408028 cites W4200496474 @default.
- W4384408028 cites W4206784457 @default.
- W4384408028 cites W4220669145 @default.
- W4384408028 cites W4220737227 @default.
- W4384408028 cites W4226336706 @default.
- W4384408028 cites W4289444079 @default.
- W4384408028 cites W4295084526 @default.
- W4384408028 cites W4297998150 @default.
- W4384408028 doi "https://doi.org/10.1186/s13068-023-02358-4" @default.
- W4384408028 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37454088" @default.
- W4384408028 hasPublicationYear "2023" @default.
- W4384408028 type Work @default.
- W4384408028 citedByCount "0" @default.
- W4384408028 crossrefType "journal-article" @default.
- W4384408028 hasAuthorship W4384408028A5024977678 @default.
- W4384408028 hasAuthorship W4384408028A5027533100 @default.
- W4384408028 hasAuthorship W4384408028A5034074714 @default.
- W4384408028 hasAuthorship W4384408028A5075791483 @default.
- W4384408028 hasAuthorship W4384408028A5076702397 @default.
- W4384408028 hasAuthorship W4384408028A5091473274 @default.
- W4384408028 hasBestOaLocation W43844080281 @default.
- W4384408028 hasConcept C104317684 @default.
- W4384408028 hasConcept C150194340 @default.
- W4384408028 hasConcept C162317418 @default.
- W4384408028 hasConcept C183688256 @default.
- W4384408028 hasConcept C185592680 @default.
- W4384408028 hasConcept C18903297 @default.