Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384408047> ?p ?o ?g. }
- W4384408047 abstract "Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment." @default.
- W4384408047 created "2023-07-16" @default.
- W4384408047 creator A5013934845 @default.
- W4384408047 creator A5019880345 @default.
- W4384408047 creator A5027976967 @default.
- W4384408047 creator A5030429904 @default.
- W4384408047 creator A5036776522 @default.
- W4384408047 creator A5054374208 @default.
- W4384408047 creator A5054948219 @default.
- W4384408047 creator A5058237455 @default.
- W4384408047 creator A5078408633 @default.
- W4384408047 creator A5078713202 @default.
- W4384408047 creator A5080976095 @default.
- W4384408047 creator A5092476456 @default.
- W4384408047 date "2023-07-15" @default.
- W4384408047 modified "2023-09-26" @default.
- W4384408047 title "Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics" @default.
- W4384408047 cites W172260869 @default.
- W4384408047 cites W1911361012 @default.
- W4384408047 cites W1972366663 @default.
- W4384408047 cites W1986634420 @default.
- W4384408047 cites W2011365682 @default.
- W4384408047 cites W2038377189 @default.
- W4384408047 cites W2040775745 @default.
- W4384408047 cites W2049596324 @default.
- W4384408047 cites W2059821434 @default.
- W4384408047 cites W2083584712 @default.
- W4384408047 cites W2100803151 @default.
- W4384408047 cites W2101129009 @default.
- W4384408047 cites W2101602127 @default.
- W4384408047 cites W2121313674 @default.
- W4384408047 cites W2126904961 @default.
- W4384408047 cites W2137012596 @default.
- W4384408047 cites W2140517924 @default.
- W4384408047 cites W2153635508 @default.
- W4384408047 cites W2161920802 @default.
- W4384408047 cites W2326523632 @default.
- W4384408047 cites W2478283619 @default.
- W4384408047 cites W2489637011 @default.
- W4384408047 cites W2507318843 @default.
- W4384408047 cites W2519491892 @default.
- W4384408047 cites W2559985807 @default.
- W4384408047 cites W2613696505 @default.
- W4384408047 cites W2783056337 @default.
- W4384408047 cites W2791204665 @default.
- W4384408047 cites W2804187314 @default.
- W4384408047 cites W2888728157 @default.
- W4384408047 cites W2912837529 @default.
- W4384408047 cites W2915034201 @default.
- W4384408047 cites W2922608205 @default.
- W4384408047 cites W2947902459 @default.
- W4384408047 cites W2994669537 @default.
- W4384408047 cites W3080746591 @default.
- W4384408047 cites W3133559404 @default.
- W4384408047 cites W3154223715 @default.
- W4384408047 cites W3203577194 @default.
- W4384408047 cites W3215685252 @default.
- W4384408047 cites W4220989508 @default.
- W4384408047 cites W4223562306 @default.
- W4384408047 cites W4225130932 @default.
- W4384408047 cites W4229021195 @default.
- W4384408047 cites W4239510810 @default.
- W4384408047 cites W4286238857 @default.
- W4384408047 cites W4318763598 @default.
- W4384408047 cites W4321500241 @default.
- W4384408047 doi "https://doi.org/10.1038/s41598-023-38542-7" @default.
- W4384408047 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37454179" @default.
- W4384408047 hasPublicationYear "2023" @default.
- W4384408047 type Work @default.
- W4384408047 citedByCount "0" @default.
- W4384408047 crossrefType "journal-article" @default.
- W4384408047 hasAuthorship W4384408047A5013934845 @default.
- W4384408047 hasAuthorship W4384408047A5019880345 @default.
- W4384408047 hasAuthorship W4384408047A5027976967 @default.
- W4384408047 hasAuthorship W4384408047A5030429904 @default.
- W4384408047 hasAuthorship W4384408047A5036776522 @default.
- W4384408047 hasAuthorship W4384408047A5054374208 @default.
- W4384408047 hasAuthorship W4384408047A5054948219 @default.
- W4384408047 hasAuthorship W4384408047A5058237455 @default.
- W4384408047 hasAuthorship W4384408047A5078408633 @default.
- W4384408047 hasAuthorship W4384408047A5078713202 @default.
- W4384408047 hasAuthorship W4384408047A5080976095 @default.
- W4384408047 hasAuthorship W4384408047A5092476456 @default.
- W4384408047 hasBestOaLocation W43844080471 @default.
- W4384408047 hasConcept C114614502 @default.
- W4384408047 hasConcept C119857082 @default.
- W4384408047 hasConcept C12267149 @default.
- W4384408047 hasConcept C126838900 @default.
- W4384408047 hasConcept C143409427 @default.
- W4384408047 hasConcept C153180895 @default.
- W4384408047 hasConcept C154945302 @default.
- W4384408047 hasConcept C33923547 @default.
- W4384408047 hasConcept C41008148 @default.
- W4384408047 hasConcept C70816921 @default.
- W4384408047 hasConcept C71924100 @default.
- W4384408047 hasConcept C74193536 @default.
- W4384408047 hasConceptScore W4384408047C114614502 @default.
- W4384408047 hasConceptScore W4384408047C119857082 @default.
- W4384408047 hasConceptScore W4384408047C12267149 @default.
- W4384408047 hasConceptScore W4384408047C126838900 @default.