Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384434148> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4384434148 endingPage "221" @default.
- W4384434148 startingPage "203" @default.
- W4384434148 abstract "In order to solve the limitations of existing malicious traffic detection methods in the Internet of Things (IoT) environment, such as resources, heterogeneous devices, scarce traffic, and dynamic threats, this paper proposes the Feature Selection based on Kernel Density Estimation (FSKDE) and the federated learning method Detection Internet of Things based on Pysyft (DIOT-Pysyft). First, IoT devices perform data preprocessing operations on the collected network traffic data; Second, the FSKDE is used to calculate the probability density of each column of features and selects features according to a preset abnormal threshold; Third, the DIOT-Pysyft is build. It initializes the server that the federated convolutional neural network (CNN) is sent to the IoT devices. The IoT devices use the processed data to train the federated CNN and send them to server secretly. After that, the improved FedAvg algorithm is used to average the gradient of the federated CNN model, which for training and transmitting the encrypted and averaged gradient to the server to build a new global model to participate in the next round of training. Finally, this paper uses the UNSW-NB15 dataset to verify the proposed method for detecting malicious traffic in the IoT environment. The experimental results show that the identification accuracy of the IoT malicious traffic detection based on FSKDE and federated DIOT-Pysyft reaches 91.78%, which can detect potential malicious traffic in the IoT environment. The improved FedAvg method further protects the privacy and security of IoT data and ensures the accuracy while protecting the data." @default.
- W4384434148 created "2023-07-16" @default.
- W4384434148 creator A5001002874 @default.
- W4384434148 creator A5006584742 @default.
- W4384434148 creator A5082158443 @default.
- W4384434148 creator A5089637502 @default.
- W4384434148 date "2023-01-01" @default.
- W4384434148 modified "2023-09-26" @default.
- W4384434148 title "IoT Malicious Traffic Detection Based on FSKDE and Federated DIOT-Pysyft" @default.
- W4384434148 cites W2072641892 @default.
- W4384434148 cites W2292021756 @default.
- W4384434148 cites W2296509296 @default.
- W4384434148 cites W2733765803 @default.
- W4384434148 cites W2801118360 @default.
- W4384434148 cites W2902788385 @default.
- W4384434148 cites W2949830777 @default.
- W4384434148 cites W2962788286 @default.
- W4384434148 cites W2977439564 @default.
- W4384434148 cites W2982426954 @default.
- W4384434148 cites W3007685543 @default.
- W4384434148 cites W3083130672 @default.
- W4384434148 cites W3122864121 @default.
- W4384434148 cites W3129836451 @default.
- W4384434148 cites W3157680283 @default.
- W4384434148 cites W3198303278 @default.
- W4384434148 cites W4206724648 @default.
- W4384434148 cites W4287118162 @default.
- W4384434148 cites W4289655682 @default.
- W4384434148 cites W4290043220 @default.
- W4384434148 doi "https://doi.org/10.1007/978-3-031-36574-4_12" @default.
- W4384434148 hasPublicationYear "2023" @default.
- W4384434148 type Work @default.
- W4384434148 citedByCount "0" @default.
- W4384434148 crossrefType "book-chapter" @default.
- W4384434148 hasAuthorship W4384434148A5001002874 @default.
- W4384434148 hasAuthorship W4384434148A5006584742 @default.
- W4384434148 hasAuthorship W4384434148A5082158443 @default.
- W4384434148 hasAuthorship W4384434148A5089637502 @default.
- W4384434148 hasConcept C10551718 @default.
- W4384434148 hasConcept C110875604 @default.
- W4384434148 hasConcept C111919701 @default.
- W4384434148 hasConcept C124101348 @default.
- W4384434148 hasConcept C154945302 @default.
- W4384434148 hasConcept C31258907 @default.
- W4384434148 hasConcept C34736171 @default.
- W4384434148 hasConcept C38652104 @default.
- W4384434148 hasConcept C41008148 @default.
- W4384434148 hasConcept C79403827 @default.
- W4384434148 hasConcept C81363708 @default.
- W4384434148 hasConcept C81860439 @default.
- W4384434148 hasConceptScore W4384434148C10551718 @default.
- W4384434148 hasConceptScore W4384434148C110875604 @default.
- W4384434148 hasConceptScore W4384434148C111919701 @default.
- W4384434148 hasConceptScore W4384434148C124101348 @default.
- W4384434148 hasConceptScore W4384434148C154945302 @default.
- W4384434148 hasConceptScore W4384434148C31258907 @default.
- W4384434148 hasConceptScore W4384434148C34736171 @default.
- W4384434148 hasConceptScore W4384434148C38652104 @default.
- W4384434148 hasConceptScore W4384434148C41008148 @default.
- W4384434148 hasConceptScore W4384434148C79403827 @default.
- W4384434148 hasConceptScore W4384434148C81363708 @default.
- W4384434148 hasConceptScore W4384434148C81860439 @default.
- W4384434148 hasLocation W43844341481 @default.
- W4384434148 hasOpenAccess W4384434148 @default.
- W4384434148 hasPrimaryLocation W43844341481 @default.
- W4384434148 hasRelatedWork W102552829 @default.
- W4384434148 hasRelatedWork W2360717114 @default.
- W4384434148 hasRelatedWork W2367545121 @default.
- W4384434148 hasRelatedWork W2373749036 @default.
- W4384434148 hasRelatedWork W2382928216 @default.
- W4384434148 hasRelatedWork W2383487638 @default.
- W4384434148 hasRelatedWork W2947585550 @default.
- W4384434148 hasRelatedWork W2952736244 @default.
- W4384434148 hasRelatedWork W3092506759 @default.
- W4384434148 hasRelatedWork W4248881655 @default.
- W4384434148 isParatext "false" @default.
- W4384434148 isRetracted "false" @default.
- W4384434148 workType "book-chapter" @default.