Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384451777> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4384451777 endingPage "452" @default.
- W4384451777 startingPage "440" @default.
- W4384451777 abstract "Objective: With an early diagnosis of thyroid cancer, one of the world's most significant health issues, it is feasible to treat the nodules before the spread of malignant thyroid gland cells. It has become crucial to develop models for predicting thyroid cancer. In light of this, the purpose of this study is to develop a clinical decision support model using the Bagged CART model, a machine learning (ML) model for the prediction of thyroid cancer. Methods: Between 2010 and 2012, 724 patients who applied to China Median University Shengjing Hospital comprised the study's data set. The dataset comprises information on nodule malignancies, demographic characteristics, ultrasound characteristics, and blood test results for all patients who underwent thyroidectomy. Using this open-access data set, the Bagged CART modeling technique was applied. Negative predictive value (NPV), specificity (Spe), balanced accuracy (BACC), positive predictive value (PPV), accuracy (ACC), sensitivity (Sen), and F1-score performance metrics were used to evaluate the model's predictive performance. In addition, a 10-fold cross-validation method was used to determine the validity of the model. In addition, variable importance was established, which reveals how much the input variables impact the output variable. Results: ACC, BACC, Sen, Spe, PPV, NPV, and F1-score obtained from the model performance metrics were calculated to 99.1%, 98.7%, 99.7%, 97.7%, 99.1%, 99.2%, and 99.4%, respectively, as a result of modeling. According to the variable importance values that were acquired for the input variables in the dataset that was investigated in this study, the seven variable that hold the greatest significance are as follows: size, TSH, blood flow: size, TSH, blood flow: enriched, multilateral: yes, FT4, site: isthmus, and age, in that order. Conclusion: As a result, the Bagged CART model was found to be effective at predicting thyroid cancer based on the findings of this study. In addition, in this study, risk factors for thyroid cancer were evaluated and their importance values were given. With these results, the decision-making process about the disease will be able to accelerate and thus, it will be able to effective in preventive medicine practices." @default.
- W4384451777 created "2023-07-16" @default.
- W4384451777 creator A5067186768 @default.
- W4384451777 creator A5078259919 @default.
- W4384451777 date "2023-08-31" @default.
- W4384451777 modified "2023-10-16" @default.
- W4384451777 title "Machine Learning Approach for Thyroid Cancer Diagnosis Using Clinical Data" @default.
- W4384451777 cites W1581001129 @default.
- W4384451777 cites W1857172647 @default.
- W4384451777 cites W1914447061 @default.
- W4384451777 cites W2020502126 @default.
- W4384451777 cites W2032991527 @default.
- W4384451777 cites W2294839422 @default.
- W4384451777 cites W2320646232 @default.
- W4384451777 cites W2327929499 @default.
- W4384451777 cites W2429612451 @default.
- W4384451777 cites W2560413962 @default.
- W4384451777 cites W2604975863 @default.
- W4384451777 cites W2608140998 @default.
- W4384451777 cites W2624882683 @default.
- W4384451777 cites W2789538733 @default.
- W4384451777 cites W2790953907 @default.
- W4384451777 cites W2795819125 @default.
- W4384451777 cites W2897100137 @default.
- W4384451777 cites W2918142881 @default.
- W4384451777 cites W2950776701 @default.
- W4384451777 cites W2977906189 @default.
- W4384451777 cites W2978577426 @default.
- W4384451777 cites W2998866379 @default.
- W4384451777 cites W3081406497 @default.
- W4384451777 cites W3092481448 @default.
- W4384451777 cites W3134156491 @default.
- W4384451777 cites W3136701243 @default.
- W4384451777 cites W3156345250 @default.
- W4384451777 cites W3203896629 @default.
- W4384451777 cites W4233489284 @default.
- W4384451777 cites W4293248242 @default.
- W4384451777 cites W4297957988 @default.
- W4384451777 doi "https://doi.org/10.19127/mbsjohs.1282265" @default.
- W4384451777 hasPublicationYear "2023" @default.
- W4384451777 type Work @default.
- W4384451777 citedByCount "0" @default.
- W4384451777 crossrefType "journal-article" @default.
- W4384451777 hasAuthorship W4384451777A5067186768 @default.
- W4384451777 hasAuthorship W4384451777A5078259919 @default.
- W4384451777 hasBestOaLocation W43844517771 @default.
- W4384451777 hasConcept C105795698 @default.
- W4384451777 hasConcept C119857082 @default.
- W4384451777 hasConcept C121608353 @default.
- W4384451777 hasConcept C126322002 @default.
- W4384451777 hasConcept C151730666 @default.
- W4384451777 hasConcept C154945302 @default.
- W4384451777 hasConcept C2776731575 @default.
- W4384451777 hasConcept C2777074255 @default.
- W4384451777 hasConcept C2779022025 @default.
- W4384451777 hasConcept C2779761222 @default.
- W4384451777 hasConcept C33923547 @default.
- W4384451777 hasConcept C41008148 @default.
- W4384451777 hasConcept C526584372 @default.
- W4384451777 hasConcept C71924100 @default.
- W4384451777 hasConcept C86803240 @default.
- W4384451777 hasConceptScore W4384451777C105795698 @default.
- W4384451777 hasConceptScore W4384451777C119857082 @default.
- W4384451777 hasConceptScore W4384451777C121608353 @default.
- W4384451777 hasConceptScore W4384451777C126322002 @default.
- W4384451777 hasConceptScore W4384451777C151730666 @default.
- W4384451777 hasConceptScore W4384451777C154945302 @default.
- W4384451777 hasConceptScore W4384451777C2776731575 @default.
- W4384451777 hasConceptScore W4384451777C2777074255 @default.
- W4384451777 hasConceptScore W4384451777C2779022025 @default.
- W4384451777 hasConceptScore W4384451777C2779761222 @default.
- W4384451777 hasConceptScore W4384451777C33923547 @default.
- W4384451777 hasConceptScore W4384451777C41008148 @default.
- W4384451777 hasConceptScore W4384451777C526584372 @default.
- W4384451777 hasConceptScore W4384451777C71924100 @default.
- W4384451777 hasConceptScore W4384451777C86803240 @default.
- W4384451777 hasIssue "3" @default.
- W4384451777 hasLocation W43844517771 @default.
- W4384451777 hasLocation W43844517772 @default.
- W4384451777 hasOpenAccess W4384451777 @default.
- W4384451777 hasPrimaryLocation W43844517771 @default.
- W4384451777 hasRelatedWork W1997599165 @default.
- W4384451777 hasRelatedWork W2035292590 @default.
- W4384451777 hasRelatedWork W2155240375 @default.
- W4384451777 hasRelatedWork W2410821043 @default.
- W4384451777 hasRelatedWork W2518631641 @default.
- W4384451777 hasRelatedWork W2748952813 @default.
- W4384451777 hasRelatedWork W2911871760 @default.
- W4384451777 hasRelatedWork W2946482046 @default.
- W4384451777 hasRelatedWork W4376566785 @default.
- W4384451777 hasRelatedWork W1849144332 @default.
- W4384451777 hasVolume "9" @default.
- W4384451777 isParatext "false" @default.
- W4384451777 isRetracted "false" @default.
- W4384451777 workType "article" @default.