Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384454330> ?p ?o ?g. }
- W4384454330 endingPage "345" @default.
- W4384454330 startingPage "339" @default.
- W4384454330 abstract "The paper is devoted to the problem of state variables observers synthesis for linear stationary system operating under condition of noise or disturbances in the measurement channel. The paper considers a completely observable linear stationary system with known parameters. It is assumed that the state variables are not measured, and the measured output variable contains a small amplitude (in general, modulo less than one) additive noise or disturbance. It is also assumed that there is no a priori information about the disturbance or noise in the measurement channel (for example, frequency spectrum, covariance, etc.). It is well known that many observer synthesis methods have been obtained for this type of systems, including the Kalman filter, which has proven itself in practice. Under the condition of complete observability and the presence of some a priori information about a random process (which is typical for the case when a disturbance in the measurement channel can be represented as white noise), approaches based on Kalman filtering demonstrate the highest quality estimates of state variables convergence to true values. Without disputing the numerous results obtained using the application of the Kalman filter, an alternative idea of the state variables observer constructing is considered in this paper. The alternative of the new approach is primarily due to the fact that there is no need to use the usual approaches based on the Luenberger observer. The paper proposes an approach based on the estimation of unknown parameters (in this case, an unknown vector of initial conditions of the plant state variables) of a linear regression model. Within the framework of the proposed method, after a simple transformation, a transition is made from a dynamic system to a linear regression model with unknown constant parameters containing noise or disturbing effects. After that, a new nonlinear parametrization of the original regression model and an algorithm for identifying unknown constant parameters using the procedure of dynamic expansion of the regressor and mixing are proposed which ensure reduction the influence of noise. The article presents the results of computer simulations verifying the stated theoretical results." @default.
- W4384454330 created "2023-07-16" @default.
- W4384454330 creator A5006475297 @default.
- W4384454330 creator A5061158447 @default.
- W4384454330 creator A5061547151 @default.
- W4384454330 creator A5067876548 @default.
- W4384454330 creator A5083189139 @default.
- W4384454330 date "2023-07-14" @default.
- W4384454330 modified "2023-09-25" @default.
- W4384454330 title "Synthesis of Adaptive Observer of State Variables for a Linear Stationary Object in the Presence of Measurement Noise" @default.
- W4384454330 cites W2083402998 @default.
- W4384454330 cites W2097089521 @default.
- W4384454330 cites W2222538316 @default.
- W4384454330 cites W2497025619 @default.
- W4384454330 cites W2523557194 @default.
- W4384454330 cites W2586389348 @default.
- W4384454330 cites W2782508123 @default.
- W4384454330 cites W2963203687 @default.
- W4384454330 cites W3155632810 @default.
- W4384454330 cites W4293093579 @default.
- W4384454330 cites W644925237 @default.
- W4384454330 doi "https://doi.org/10.17587/mau.24.339-345" @default.
- W4384454330 hasPublicationYear "2023" @default.
- W4384454330 type Work @default.
- W4384454330 citedByCount "0" @default.
- W4384454330 crossrefType "journal-article" @default.
- W4384454330 hasAuthorship W4384454330A5006475297 @default.
- W4384454330 hasAuthorship W4384454330A5061158447 @default.
- W4384454330 hasAuthorship W4384454330A5061547151 @default.
- W4384454330 hasAuthorship W4384454330A5067876548 @default.
- W4384454330 hasAuthorship W4384454330A5083189139 @default.
- W4384454330 hasBestOaLocation W43844543302 @default.
- W4384454330 hasConcept C105795698 @default.
- W4384454330 hasConcept C11588082 @default.
- W4384454330 hasConcept C115961682 @default.
- W4384454330 hasConcept C121332964 @default.
- W4384454330 hasConcept C129537906 @default.
- W4384454330 hasConcept C154945302 @default.
- W4384454330 hasConcept C157286648 @default.
- W4384454330 hasConcept C158622935 @default.
- W4384454330 hasConcept C178650346 @default.
- W4384454330 hasConcept C206833254 @default.
- W4384454330 hasConcept C2775924081 @default.
- W4384454330 hasConcept C2777798563 @default.
- W4384454330 hasConcept C2780704645 @default.
- W4384454330 hasConcept C28826006 @default.
- W4384454330 hasConcept C3031470 @default.
- W4384454330 hasConcept C33923547 @default.
- W4384454330 hasConcept C36299963 @default.
- W4384454330 hasConcept C41008148 @default.
- W4384454330 hasConcept C47446073 @default.
- W4384454330 hasConcept C50050547 @default.
- W4384454330 hasConcept C62520636 @default.
- W4384454330 hasConcept C74650414 @default.
- W4384454330 hasConcept C97355855 @default.
- W4384454330 hasConcept C99498987 @default.
- W4384454330 hasConceptScore W4384454330C105795698 @default.
- W4384454330 hasConceptScore W4384454330C11588082 @default.
- W4384454330 hasConceptScore W4384454330C115961682 @default.
- W4384454330 hasConceptScore W4384454330C121332964 @default.
- W4384454330 hasConceptScore W4384454330C129537906 @default.
- W4384454330 hasConceptScore W4384454330C154945302 @default.
- W4384454330 hasConceptScore W4384454330C157286648 @default.
- W4384454330 hasConceptScore W4384454330C158622935 @default.
- W4384454330 hasConceptScore W4384454330C178650346 @default.
- W4384454330 hasConceptScore W4384454330C206833254 @default.
- W4384454330 hasConceptScore W4384454330C2775924081 @default.
- W4384454330 hasConceptScore W4384454330C2777798563 @default.
- W4384454330 hasConceptScore W4384454330C2780704645 @default.
- W4384454330 hasConceptScore W4384454330C28826006 @default.
- W4384454330 hasConceptScore W4384454330C3031470 @default.
- W4384454330 hasConceptScore W4384454330C33923547 @default.
- W4384454330 hasConceptScore W4384454330C36299963 @default.
- W4384454330 hasConceptScore W4384454330C41008148 @default.
- W4384454330 hasConceptScore W4384454330C47446073 @default.
- W4384454330 hasConceptScore W4384454330C50050547 @default.
- W4384454330 hasConceptScore W4384454330C62520636 @default.
- W4384454330 hasConceptScore W4384454330C74650414 @default.
- W4384454330 hasConceptScore W4384454330C97355855 @default.
- W4384454330 hasConceptScore W4384454330C99498987 @default.
- W4384454330 hasIssue "7" @default.
- W4384454330 hasLocation W43844543301 @default.
- W4384454330 hasLocation W43844543302 @default.
- W4384454330 hasOpenAccess W4384454330 @default.
- W4384454330 hasPrimaryLocation W43844543301 @default.
- W4384454330 hasRelatedWork W2067678257 @default.
- W4384454330 hasRelatedWork W2136261560 @default.
- W4384454330 hasRelatedWork W2387688832 @default.
- W4384454330 hasRelatedWork W2398015501 @default.
- W4384454330 hasRelatedWork W2547763534 @default.
- W4384454330 hasRelatedWork W2597265945 @default.
- W4384454330 hasRelatedWork W3000717434 @default.
- W4384454330 hasRelatedWork W3016429140 @default.
- W4384454330 hasRelatedWork W3155167446 @default.
- W4384454330 hasRelatedWork W3186892130 @default.
- W4384454330 hasVolume "24" @default.
- W4384454330 isParatext "false" @default.
- W4384454330 isRetracted "false" @default.