Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384472149> ?p ?o ?g. }
- W4384472149 endingPage "109524" @default.
- W4384472149 startingPage "109524" @default.
- W4384472149 abstract "In this paper, the estimation of the ideal ratio mask (IRM) has been carried out based on speech cochleagram and visual cues using Audio-Visual Multichannel Convolutional Neural Network (AVMCNN) to enhance the speech signal. Recently several researchers have shown that speech enhancement using visual data as an additional input along with the audio data is more effective in minimizing the acoustic noise present in the speech signal. This work proposes a novel CNN-based audio-visual IRM estimation model. In the proposed audio-visual IRM estimation model, the dynamics of both audio and visual signal features are extracted using multichannel CNN and contextually combined for speech enhancement. The enhanced speech obtained using the proposed model is evaluated based on speech quality and intelligibility. The evaluation results signify that the proposed audio-visual mask estimation model shows improved performance over the audio-only, visual-only, and existing audio-visual mask estimation models. In turn, the proposed AVMCNN model proves its effectiveness in combining the dynamics of the audio features with the visual speech features for speech enhancement." @default.
- W4384472149 created "2023-07-17" @default.
- W4384472149 creator A5006197061 @default.
- W4384472149 creator A5036096280 @default.
- W4384472149 creator A5086730003 @default.
- W4384472149 date "2023-08-01" @default.
- W4384472149 modified "2023-09-26" @default.
- W4384472149 title "Ideal ratio mask estimation based on cochleagram for audio-visual monaural speech enhancement" @default.
- W4384472149 cites W1662894300 @default.
- W4384472149 cites W1797158261 @default.
- W4384472149 cites W1817183475 @default.
- W4384472149 cites W1952824372 @default.
- W4384472149 cites W1963897898 @default.
- W4384472149 cites W1963950237 @default.
- W4384472149 cites W1968939597 @default.
- W4384472149 cites W1971814477 @default.
- W4384472149 cites W1985226152 @default.
- W4384472149 cites W1999846783 @default.
- W4384472149 cites W2000916836 @default.
- W4384472149 cites W2008592360 @default.
- W4384472149 cites W2015143272 @default.
- W4384472149 cites W2019010477 @default.
- W4384472149 cites W2038010270 @default.
- W4384472149 cites W2044893557 @default.
- W4384472149 cites W2067295501 @default.
- W4384472149 cites W2073612610 @default.
- W4384472149 cites W2094461119 @default.
- W4384472149 cites W2096779346 @default.
- W4384472149 cites W2105594594 @default.
- W4384472149 cites W2109349638 @default.
- W4384472149 cites W2121973264 @default.
- W4384472149 cites W2128653836 @default.
- W4384472149 cites W2137400100 @default.
- W4384472149 cites W2140977001 @default.
- W4384472149 cites W2145760110 @default.
- W4384472149 cites W2154066856 @default.
- W4384472149 cites W2155041441 @default.
- W4384472149 cites W2402901296 @default.
- W4384472149 cites W2405774341 @default.
- W4384472149 cites W2408688265 @default.
- W4384472149 cites W2550397165 @default.
- W4384472149 cites W2577762507 @default.
- W4384472149 cites W2584393883 @default.
- W4384472149 cites W2622055663 @default.
- W4384472149 cites W2774389566 @default.
- W4384472149 cites W2943554574 @default.
- W4384472149 cites W2971630540 @default.
- W4384472149 cites W2991251958 @default.
- W4384472149 cites W3004146833 @default.
- W4384472149 cites W3097096317 @default.
- W4384472149 cites W3130062067 @default.
- W4384472149 cites W3157352387 @default.
- W4384472149 cites W4232282348 @default.
- W4384472149 cites W4289665794 @default.
- W4384472149 doi "https://doi.org/10.1016/j.apacoust.2023.109524" @default.
- W4384472149 hasPublicationYear "2023" @default.
- W4384472149 type Work @default.
- W4384472149 citedByCount "0" @default.
- W4384472149 crossrefType "journal-article" @default.
- W4384472149 hasAuthorship W4384472149A5006197061 @default.
- W4384472149 hasAuthorship W4384472149A5036096280 @default.
- W4384472149 hasAuthorship W4384472149A5086730003 @default.
- W4384472149 hasConcept C102894143 @default.
- W4384472149 hasConcept C111472728 @default.
- W4384472149 hasConcept C138885662 @default.
- W4384472149 hasConcept C13895895 @default.
- W4384472149 hasConcept C154945302 @default.
- W4384472149 hasConcept C163294075 @default.
- W4384472149 hasConcept C2776182073 @default.
- W4384472149 hasConcept C28490314 @default.
- W4384472149 hasConcept C3017588708 @default.
- W4384472149 hasConcept C41008148 @default.
- W4384472149 hasConcept C49774154 @default.
- W4384472149 hasConcept C60048801 @default.
- W4384472149 hasConcept C64922751 @default.
- W4384472149 hasConcept C81363708 @default.
- W4384472149 hasConceptScore W4384472149C102894143 @default.
- W4384472149 hasConceptScore W4384472149C111472728 @default.
- W4384472149 hasConceptScore W4384472149C138885662 @default.
- W4384472149 hasConceptScore W4384472149C13895895 @default.
- W4384472149 hasConceptScore W4384472149C154945302 @default.
- W4384472149 hasConceptScore W4384472149C163294075 @default.
- W4384472149 hasConceptScore W4384472149C2776182073 @default.
- W4384472149 hasConceptScore W4384472149C28490314 @default.
- W4384472149 hasConceptScore W4384472149C3017588708 @default.
- W4384472149 hasConceptScore W4384472149C41008148 @default.
- W4384472149 hasConceptScore W4384472149C49774154 @default.
- W4384472149 hasConceptScore W4384472149C60048801 @default.
- W4384472149 hasConceptScore W4384472149C64922751 @default.
- W4384472149 hasConceptScore W4384472149C81363708 @default.
- W4384472149 hasLocation W43844721491 @default.
- W4384472149 hasOpenAccess W4384472149 @default.
- W4384472149 hasPrimaryLocation W43844721491 @default.
- W4384472149 hasRelatedWork W2037635165 @default.
- W4384472149 hasRelatedWork W2039050846 @default.
- W4384472149 hasRelatedWork W2140410589 @default.
- W4384472149 hasRelatedWork W2620812332 @default.
- W4384472149 hasRelatedWork W2921683566 @default.