Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384497795> ?p ?o ?g. }
- W4384497795 abstract "Introduction Brain Network Models (BNMs) are mathematical models that simulate the activity of the entire brain. These models use neural mass models to represent local activity in different brain regions that interact with each other via a global structural network. Researchers have been interested in using these models to explain measured brain activity, particularly resting state functional magnetic resonance imaging (rs-fMRI). BNMs have shown to produce similar properties as measured data computed over longer periods of time such as average functional connectivity (FC), but it is unclear how well simulated trajectories compare to empirical trajectories on a timepoint-by-timepoint basis. During task fMRI, the relevant processes pertaining to task occur over the time frame of the hemodynamic response function, and thus it is important to understand how BNMs capture these dynamics over these short periods. Methods To test the nature of BNMs’ short-term trajectories, we used a deep learning technique called Neural ODE to simulate short trajectories from estimated initial conditions based on observed fMRI measurements. To compare to previous methods, we solved for the parameterization of a specific BNM, the Firing Rate Model, using these short-term trajectories as a metric. Results Our results show an agreement between parameterization of using previous long-term metrics with the novel short term metrics exists if also considering other factors such as the sensitivity in accuracy with relative to changes in structural connectivity, and the presence of noise. Discussion Therefore, we conclude that there is evidence that by using Neural ODE, BNMs can be simulated in a meaningful way when comparing against measured data trajectories, although future studies are necessary to establish how BNM activity relate to behavioral variables or to faster neural processes during this time period." @default.
- W4384497795 created "2023-07-18" @default.
- W4384497795 creator A5006999625 @default.
- W4384497795 creator A5067145255 @default.
- W4384497795 creator A5080980159 @default.
- W4384497795 creator A5082230429 @default.
- W4384497795 date "2023-07-17" @default.
- W4384497795 modified "2023-10-18" @default.
- W4384497795 title "A deep learning approach to estimating initial conditions of Brain Network Models in reference to measured fMRI data" @default.
- W4384497795 cites W1985220467 @default.
- W4384497795 cites W1996196481 @default.
- W4384497795 cites W2005644553 @default.
- W4384497795 cites W2006312249 @default.
- W4384497795 cites W2016188209 @default.
- W4384497795 cites W2024729467 @default.
- W4384497795 cites W2056358033 @default.
- W4384497795 cites W2074725578 @default.
- W4384497795 cites W2075583786 @default.
- W4384497795 cites W2079450984 @default.
- W4384497795 cites W2101135654 @default.
- W4384497795 cites W2116647777 @default.
- W4384497795 cites W2157446241 @default.
- W4384497795 cites W2159929956 @default.
- W4384497795 cites W2542538841 @default.
- W4384497795 cites W2590144118 @default.
- W4384497795 cites W2597410197 @default.
- W4384497795 cites W2724344943 @default.
- W4384497795 cites W2728707994 @default.
- W4384497795 cites W2806992400 @default.
- W4384497795 cites W2888432608 @default.
- W4384497795 cites W2951629723 @default.
- W4384497795 cites W2989871714 @default.
- W4384497795 cites W3004301501 @default.
- W4384497795 cites W3037579089 @default.
- W4384497795 cites W3100588730 @default.
- W4384497795 cites W3117078785 @default.
- W4384497795 cites W613360614 @default.
- W4384497795 doi "https://doi.org/10.3389/fnins.2023.1159914" @default.
- W4384497795 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37529235" @default.
- W4384497795 hasPublicationYear "2023" @default.
- W4384497795 type Work @default.
- W4384497795 citedByCount "0" @default.
- W4384497795 crossrefType "journal-article" @default.
- W4384497795 hasAuthorship W4384497795A5006999625 @default.
- W4384497795 hasAuthorship W4384497795A5067145255 @default.
- W4384497795 hasAuthorship W4384497795A5080980159 @default.
- W4384497795 hasAuthorship W4384497795A5082230429 @default.
- W4384497795 hasBestOaLocation W43844977951 @default.
- W4384497795 hasConcept C119857082 @default.
- W4384497795 hasConcept C120843803 @default.
- W4384497795 hasConcept C121332964 @default.
- W4384497795 hasConcept C153180895 @default.
- W4384497795 hasConcept C154945302 @default.
- W4384497795 hasConcept C15744967 @default.
- W4384497795 hasConcept C162324750 @default.
- W4384497795 hasConcept C169760540 @default.
- W4384497795 hasConcept C176217482 @default.
- W4384497795 hasConcept C21547014 @default.
- W4384497795 hasConcept C2779226451 @default.
- W4384497795 hasConcept C41008148 @default.
- W4384497795 hasConcept C50644808 @default.
- W4384497795 hasConcept C522805319 @default.
- W4384497795 hasConcept C58693492 @default.
- W4384497795 hasConcept C61797465 @default.
- W4384497795 hasConcept C62520636 @default.
- W4384497795 hasConceptScore W4384497795C119857082 @default.
- W4384497795 hasConceptScore W4384497795C120843803 @default.
- W4384497795 hasConceptScore W4384497795C121332964 @default.
- W4384497795 hasConceptScore W4384497795C153180895 @default.
- W4384497795 hasConceptScore W4384497795C154945302 @default.
- W4384497795 hasConceptScore W4384497795C15744967 @default.
- W4384497795 hasConceptScore W4384497795C162324750 @default.
- W4384497795 hasConceptScore W4384497795C169760540 @default.
- W4384497795 hasConceptScore W4384497795C176217482 @default.
- W4384497795 hasConceptScore W4384497795C21547014 @default.
- W4384497795 hasConceptScore W4384497795C2779226451 @default.
- W4384497795 hasConceptScore W4384497795C41008148 @default.
- W4384497795 hasConceptScore W4384497795C50644808 @default.
- W4384497795 hasConceptScore W4384497795C522805319 @default.
- W4384497795 hasConceptScore W4384497795C58693492 @default.
- W4384497795 hasConceptScore W4384497795C61797465 @default.
- W4384497795 hasConceptScore W4384497795C62520636 @default.
- W4384497795 hasLocation W43844977951 @default.
- W4384497795 hasLocation W43844977952 @default.
- W4384497795 hasLocation W43844977953 @default.
- W4384497795 hasLocation W43844977954 @default.
- W4384497795 hasOpenAccess W4384497795 @default.
- W4384497795 hasPrimaryLocation W43844977951 @default.
- W4384497795 hasRelatedWork W2000322059 @default.
- W4384497795 hasRelatedWork W2052252020 @default.
- W4384497795 hasRelatedWork W2118789511 @default.
- W4384497795 hasRelatedWork W2160803813 @default.
- W4384497795 hasRelatedWork W3002526821 @default.
- W4384497795 hasRelatedWork W3095983064 @default.
- W4384497795 hasRelatedWork W4306871272 @default.
- W4384497795 hasRelatedWork W4324135493 @default.
- W4384497795 hasRelatedWork W4381309078 @default.
- W4384497795 hasRelatedWork W2188308326 @default.
- W4384497795 hasVolume "17" @default.
- W4384497795 isParatext "false" @default.