Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384499322> ?p ?o ?g. }
- W4384499322 endingPage "401" @default.
- W4384499322 startingPage "392" @default.
- W4384499322 abstract "Glaucoma is a major cause of irreversible blindness worldwide. As glaucoma often presents without symptoms, early detection and intervention are important in delaying progression. Deep learning (DL) has emerged as a rapidly advancing tool to help achieve these objectives. In this narrative review, data types and visualization approaches for presenting model predictions, including models based on tabular data, functional data, and/or structural data, are summarized, and the importance of data source diversity for improving the utility and generalizability of DL models is explored. Examples of innovative approaches to understanding predictions of artificial intelligence (AI) models and alignment with clinicians are provided. In addition, methods to enhance the interpretability of clinical features from tabular data used to train AI models are investigated. Examples of published DL models that include interfaces to facilitate end-user engagement and minimize cognitive and time burdens are highlighted. The stages of integrating AI models into existing clinical workflows are reviewed, and challenges are discussed. Reviewing these approaches may help inform the generation of user-friendly interfaces that are successfully integrated into clinical information systems. This review details key principles regarding visualization approaches in DL models of glaucoma. The articles reviewed here focused on usability, explainability, and promotion of clinician trust to encourage wider adoption for clinical use. These studies demonstrate important progress in addressing visualization and explainability issues required for successful real-world implementation of DL models in glaucoma." @default.
- W4384499322 created "2023-07-18" @default.
- W4384499322 creator A5002377974 @default.
- W4384499322 creator A5016855297 @default.
- W4384499322 creator A5018269172 @default.
- W4384499322 creator A5043994887 @default.
- W4384499322 creator A5063363976 @default.
- W4384499322 creator A5069439888 @default.
- W4384499322 date "2023-07-01" @default.
- W4384499322 modified "2023-09-27" @default.
- W4384499322 title "Review of Visualization Approaches in Deep Learning Models of Glaucoma" @default.
- W4384499322 cites W2034742711 @default.
- W4384499322 cites W2053500297 @default.
- W4384499322 cites W2129663296 @default.
- W4384499322 cites W2229941360 @default.
- W4384499322 cites W2334319871 @default.
- W4384499322 cites W2610332124 @default.
- W4384499322 cites W2739090751 @default.
- W4384499322 cites W2766982135 @default.
- W4384499322 cites W2773723025 @default.
- W4384499322 cites W2790876277 @default.
- W4384499322 cites W2796421769 @default.
- W4384499322 cites W2884563238 @default.
- W4384499322 cites W2886281300 @default.
- W4384499322 cites W2893356526 @default.
- W4384499322 cites W2899951262 @default.
- W4384499322 cites W2903117925 @default.
- W4384499322 cites W2903396681 @default.
- W4384499322 cites W2906475515 @default.
- W4384499322 cites W2949122205 @default.
- W4384499322 cites W2954801320 @default.
- W4384499322 cites W2960170118 @default.
- W4384499322 cites W2962772482 @default.
- W4384499322 cites W2963251008 @default.
- W4384499322 cites W2968303179 @default.
- W4384499322 cites W2972246881 @default.
- W4384499322 cites W2972844301 @default.
- W4384499322 cites W2976808722 @default.
- W4384499322 cites W2977922008 @default.
- W4384499322 cites W2981344511 @default.
- W4384499322 cites W2991786700 @default.
- W4384499322 cites W3006962589 @default.
- W4384499322 cites W3019643191 @default.
- W4384499322 cites W3022281167 @default.
- W4384499322 cites W3033944576 @default.
- W4384499322 cites W3034165843 @default.
- W4384499322 cites W3041379475 @default.
- W4384499322 cites W3045215429 @default.
- W4384499322 cites W3046558180 @default.
- W4384499322 cites W3080627676 @default.
- W4384499322 cites W3114864202 @default.
- W4384499322 cites W3120039644 @default.
- W4384499322 cites W3123014086 @default.
- W4384499322 cites W3123304355 @default.
- W4384499322 cites W3128601380 @default.
- W4384499322 cites W3138645122 @default.
- W4384499322 cites W3159098702 @default.
- W4384499322 cites W3159875333 @default.
- W4384499322 cites W3181037949 @default.
- W4384499322 cites W3191673612 @default.
- W4384499322 cites W3201854521 @default.
- W4384499322 cites W3203886254 @default.
- W4384499322 cites W4200044775 @default.
- W4384499322 cites W4205170775 @default.
- W4384499322 cites W4212797654 @default.
- W4384499322 cites W4220847634 @default.
- W4384499322 cites W4226061700 @default.
- W4384499322 cites W4242214031 @default.
- W4384499322 cites W4281747382 @default.
- W4384499322 cites W4285077133 @default.
- W4384499322 cites W4285275117 @default.
- W4384499322 cites W4291163882 @default.
- W4384499322 cites W4306771247 @default.
- W4384499322 cites W4318200290 @default.
- W4384499322 cites W4323345750 @default.
- W4384499322 doi "https://doi.org/10.1097/apo.0000000000000619" @default.
- W4384499322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37523431" @default.
- W4384499322 hasPublicationYear "2023" @default.
- W4384499322 type Work @default.
- W4384499322 citedByCount "1" @default.
- W4384499322 countsByYear W43844993222023 @default.
- W4384499322 crossrefType "journal-article" @default.
- W4384499322 hasAuthorship W4384499322A5002377974 @default.
- W4384499322 hasAuthorship W4384499322A5016855297 @default.
- W4384499322 hasAuthorship W4384499322A5018269172 @default.
- W4384499322 hasAuthorship W4384499322A5043994887 @default.
- W4384499322 hasAuthorship W4384499322A5063363976 @default.
- W4384499322 hasAuthorship W4384499322A5069439888 @default.
- W4384499322 hasBestOaLocation W43844993221 @default.
- W4384499322 hasConcept C107457646 @default.
- W4384499322 hasConcept C118487528 @default.
- W4384499322 hasConcept C119857082 @default.
- W4384499322 hasConcept C138496976 @default.
- W4384499322 hasConcept C154945302 @default.
- W4384499322 hasConcept C15744967 @default.
- W4384499322 hasConcept C170130773 @default.
- W4384499322 hasConcept C177212765 @default.
- W4384499322 hasConcept C2522767166 @default.