Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384519511> ?p ?o ?g. }
- W4384519511 endingPage "19647" @default.
- W4384519511 startingPage "19635" @default.
- W4384519511 abstract "Long-span bridges are the lifeline throats of urban transportation network. Deflection (i.e., deformation) behavior of long-span bridges is complex. It can be found from long-term monitoring data that there is an obvious time-lag effect between the quasi-static behavior of deflection and environmental temperature, and abnormal signals, such as drift and jump-point, appear sporadically in the deflection data. In order to deal with the interference from the data time lag and abnormal signal, this article adopts the Bayesian multiple linear regression (BMLR) method to establish the mathematical model of bridge deflection based on temperature, other points’ deflection, or cable force data. A new paradigm of the recursive modeling strategy of BMLR for bridge deflection based on short-term data is proposed, which truly realizes the dynamic update ability of Bayes’ theorem in multiple regression modeling. Under the same conditions of modeling, the proposed paradigm performs higher accuracy of prediction and lower space of data storage occupied than the traditional multiple linear regression method and is less time taken than methods of deep learning. The whole process was validated to be robust to the data time lag and abnormal signal. When faced with the situation of sparse sensing points and not enough long time of monitoring, it is possible to fast predict deflection of new-added/adjusted sensing points using short-term observation data." @default.
- W4384519511 created "2023-07-18" @default.
- W4384519511 creator A5048381186 @default.
- W4384519511 creator A5068406600 @default.
- W4384519511 creator A5069973483 @default.
- W4384519511 creator A5072485510 @default.
- W4384519511 creator A5091382655 @default.
- W4384519511 creator A5091695712 @default.
- W4384519511 date "2023-09-01" @default.
- W4384519511 modified "2023-10-16" @default.
- W4384519511 title "Bayesian Multiple Linear Regression and New Modeling Paradigm for Structural Deflection Robust to Data Time Lag and Abnormal Signal" @default.
- W4384519511 cites W2772836553 @default.
- W4384519511 cites W2781579810 @default.
- W4384519511 cites W2791957585 @default.
- W4384519511 cites W2805420638 @default.
- W4384519511 cites W2809029272 @default.
- W4384519511 cites W2883709788 @default.
- W4384519511 cites W2891940797 @default.
- W4384519511 cites W2911364135 @default.
- W4384519511 cites W2951934632 @default.
- W4384519511 cites W2971463639 @default.
- W4384519511 cites W2978106670 @default.
- W4384519511 cites W3006252420 @default.
- W4384519511 cites W3008815634 @default.
- W4384519511 cites W3011832765 @default.
- W4384519511 cites W3018355782 @default.
- W4384519511 cites W3045740496 @default.
- W4384519511 cites W3079914873 @default.
- W4384519511 cites W3092710114 @default.
- W4384519511 cites W3111283090 @default.
- W4384519511 cites W3115652015 @default.
- W4384519511 cites W3127472657 @default.
- W4384519511 cites W3128181794 @default.
- W4384519511 cites W3131779686 @default.
- W4384519511 cites W3148123825 @default.
- W4384519511 cites W3204332359 @default.
- W4384519511 cites W3209018420 @default.
- W4384519511 cites W4205142347 @default.
- W4384519511 cites W4205165134 @default.
- W4384519511 cites W4205908782 @default.
- W4384519511 cites W4206304947 @default.
- W4384519511 cites W4210390043 @default.
- W4384519511 cites W4211234836 @default.
- W4384519511 cites W4212873961 @default.
- W4384519511 cites W4224935331 @default.
- W4384519511 cites W4226278914 @default.
- W4384519511 cites W4280493782 @default.
- W4384519511 cites W4280605288 @default.
- W4384519511 cites W4296295606 @default.
- W4384519511 cites W4301599572 @default.
- W4384519511 cites W4306249448 @default.
- W4384519511 cites W4306935928 @default.
- W4384519511 cites W4308421455 @default.
- W4384519511 doi "https://doi.org/10.1109/jsen.2023.3294912" @default.
- W4384519511 hasPublicationYear "2023" @default.
- W4384519511 type Work @default.
- W4384519511 citedByCount "0" @default.
- W4384519511 crossrefType "journal-article" @default.
- W4384519511 hasAuthorship W4384519511A5048381186 @default.
- W4384519511 hasAuthorship W4384519511A5068406600 @default.
- W4384519511 hasAuthorship W4384519511A5069973483 @default.
- W4384519511 hasAuthorship W4384519511A5072485510 @default.
- W4384519511 hasAuthorship W4384519511A5091382655 @default.
- W4384519511 hasAuthorship W4384519511A5091695712 @default.
- W4384519511 hasConcept C107673813 @default.
- W4384519511 hasConcept C11413529 @default.
- W4384519511 hasConcept C119857082 @default.
- W4384519511 hasConcept C120665830 @default.
- W4384519511 hasConcept C121332964 @default.
- W4384519511 hasConcept C124101348 @default.
- W4384519511 hasConcept C127413603 @default.
- W4384519511 hasConcept C151406439 @default.
- W4384519511 hasConcept C154945302 @default.
- W4384519511 hasConcept C2776247918 @default.
- W4384519511 hasConcept C2781355719 @default.
- W4384519511 hasConcept C31258907 @default.
- W4384519511 hasConcept C41008148 @default.
- W4384519511 hasConcept C48921125 @default.
- W4384519511 hasConcept C66938386 @default.
- W4384519511 hasConcept C75778745 @default.
- W4384519511 hasConceptScore W4384519511C107673813 @default.
- W4384519511 hasConceptScore W4384519511C11413529 @default.
- W4384519511 hasConceptScore W4384519511C119857082 @default.
- W4384519511 hasConceptScore W4384519511C120665830 @default.
- W4384519511 hasConceptScore W4384519511C121332964 @default.
- W4384519511 hasConceptScore W4384519511C124101348 @default.
- W4384519511 hasConceptScore W4384519511C127413603 @default.
- W4384519511 hasConceptScore W4384519511C151406439 @default.
- W4384519511 hasConceptScore W4384519511C154945302 @default.
- W4384519511 hasConceptScore W4384519511C2776247918 @default.
- W4384519511 hasConceptScore W4384519511C2781355719 @default.
- W4384519511 hasConceptScore W4384519511C31258907 @default.
- W4384519511 hasConceptScore W4384519511C41008148 @default.
- W4384519511 hasConceptScore W4384519511C48921125 @default.
- W4384519511 hasConceptScore W4384519511C66938386 @default.
- W4384519511 hasConceptScore W4384519511C75778745 @default.
- W4384519511 hasFunder F4320321001 @default.
- W4384519511 hasFunder F4320322769 @default.