Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384522182> ?p ?o ?g. }
- W4384522182 abstract "The functional characterization of different neuronal types has been a longstanding and crucial challenge. With the advent of physical quantum computers, it has become possible to apply quantum machine learning algorithms to translate theoretical research into practical solutions. Previous studies have shown the advantages of quantum algorithms on artificially generated datasets, and initial experiments with small binary classification problems have yielded comparable outcomes to classical algorithms. However, it is essential to investigate the potential quantum advantage using real-world data. To the best of our knowledge, this study is the first to propose the utilization of quantum systems to classify neuron morphologies, thereby enhancing our understanding of the performance of automatic multiclass neuron classification using quantum kernel methods. We examined the influence of feature engineering on classification accuracy and found that quantum kernel methods achieved similar performance to classical methods, with certain advantages observed in various configurations." @default.
- W4384522182 created "2023-07-18" @default.
- W4384522182 creator A5030608661 @default.
- W4384522182 creator A5055157209 @default.
- W4384522182 creator A5079679780 @default.
- W4384522182 date "2023-07-17" @default.
- W4384522182 modified "2023-09-26" @default.
- W4384522182 title "Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M-type classification" @default.
- W4384522182 cites W1921182138 @default.
- W4384522182 cites W1987777676 @default.
- W4384522182 cites W1993020437 @default.
- W4384522182 cites W1995031373 @default.
- W4384522182 cites W2000744024 @default.
- W4384522182 cites W2016351976 @default.
- W4384522182 cites W2044648261 @default.
- W4384522182 cites W2061186544 @default.
- W4384522182 cites W2062450961 @default.
- W4384522182 cites W2073985768 @default.
- W4384522182 cites W2074209941 @default.
- W4384522182 cites W2074633779 @default.
- W4384522182 cites W2084652510 @default.
- W4384522182 cites W2087347434 @default.
- W4384522182 cites W2103956991 @default.
- W4384522182 cites W2117317133 @default.
- W4384522182 cites W2121667071 @default.
- W4384522182 cites W2131980109 @default.
- W4384522182 cites W2147916701 @default.
- W4384522182 cites W2156909104 @default.
- W4384522182 cites W2231058499 @default.
- W4384522182 cites W2547711524 @default.
- W4384522182 cites W2559394418 @default.
- W4384522182 cites W2583596256 @default.
- W4384522182 cites W2744478946 @default.
- W4384522182 cites W2792946961 @default.
- W4384522182 cites W2798434869 @default.
- W4384522182 cites W2804292523 @default.
- W4384522182 cites W2949311293 @default.
- W4384522182 cites W2950976066 @default.
- W4384522182 cites W3103938541 @default.
- W4384522182 cites W3150791846 @default.
- W4384522182 cites W3177163429 @default.
- W4384522182 cites W3182433019 @default.
- W4384522182 cites W3198713700 @default.
- W4384522182 cites W4220660638 @default.
- W4384522182 cites W4287184090 @default.
- W4384522182 cites W4306962090 @default.
- W4384522182 cites W4309402279 @default.
- W4384522182 cites W4377009867 @default.
- W4384522182 cites W4380627387 @default.
- W4384522182 doi "https://doi.org/10.1038/s41598-023-38558-z" @default.
- W4384522182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37460767" @default.
- W4384522182 hasPublicationYear "2023" @default.
- W4384522182 type Work @default.
- W4384522182 citedByCount "0" @default.
- W4384522182 crossrefType "journal-article" @default.
- W4384522182 hasAuthorship W4384522182A5030608661 @default.
- W4384522182 hasAuthorship W4384522182A5055157209 @default.
- W4384522182 hasAuthorship W4384522182A5079679780 @default.
- W4384522182 hasBestOaLocation W43845221821 @default.
- W4384522182 hasConcept C11413529 @default.
- W4384522182 hasConcept C114614502 @default.
- W4384522182 hasConcept C119857082 @default.
- W4384522182 hasConcept C121332964 @default.
- W4384522182 hasConcept C12267149 @default.
- W4384522182 hasConcept C123860398 @default.
- W4384522182 hasConcept C137019171 @default.
- W4384522182 hasConcept C138885662 @default.
- W4384522182 hasConcept C154945302 @default.
- W4384522182 hasConcept C2776401178 @default.
- W4384522182 hasConcept C2779094486 @default.
- W4384522182 hasConcept C33923547 @default.
- W4384522182 hasConcept C41008148 @default.
- W4384522182 hasConcept C41895202 @default.
- W4384522182 hasConcept C48372109 @default.
- W4384522182 hasConcept C58053490 @default.
- W4384522182 hasConcept C62520636 @default.
- W4384522182 hasConcept C66905080 @default.
- W4384522182 hasConcept C74193536 @default.
- W4384522182 hasConcept C84114770 @default.
- W4384522182 hasConcept C94375191 @default.
- W4384522182 hasConceptScore W4384522182C11413529 @default.
- W4384522182 hasConceptScore W4384522182C114614502 @default.
- W4384522182 hasConceptScore W4384522182C119857082 @default.
- W4384522182 hasConceptScore W4384522182C121332964 @default.
- W4384522182 hasConceptScore W4384522182C12267149 @default.
- W4384522182 hasConceptScore W4384522182C123860398 @default.
- W4384522182 hasConceptScore W4384522182C137019171 @default.
- W4384522182 hasConceptScore W4384522182C138885662 @default.
- W4384522182 hasConceptScore W4384522182C154945302 @default.
- W4384522182 hasConceptScore W4384522182C2776401178 @default.
- W4384522182 hasConceptScore W4384522182C2779094486 @default.
- W4384522182 hasConceptScore W4384522182C33923547 @default.
- W4384522182 hasConceptScore W4384522182C41008148 @default.
- W4384522182 hasConceptScore W4384522182C41895202 @default.
- W4384522182 hasConceptScore W4384522182C48372109 @default.
- W4384522182 hasConceptScore W4384522182C58053490 @default.
- W4384522182 hasConceptScore W4384522182C62520636 @default.
- W4384522182 hasConceptScore W4384522182C66905080 @default.
- W4384522182 hasConceptScore W4384522182C74193536 @default.
- W4384522182 hasConceptScore W4384522182C84114770 @default.