Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384522268> ?p ?o ?g. }
- W4384522268 abstract "Abstract Tokamaks are the most promising way for nuclear fusion reactors. Disruption in tokamaks is a violent event that terminates a confined plasma and causes unacceptable damage to the device. Machine learning models have been widely used to predict incoming disruptions. However, future reactors, with much higher stored energy, cannot provide enough unmitigated disruption data at high performance to train the predictor before damaging themselves. Here we apply a deep parameter-based transfer learning method in disruption prediction. We train a model on the J-TEXT tokamak and transfer it, with only 20 discharges, to EAST, which has a large difference in size, operation regime, and configuration with respect to J-TEXT. Results demonstrate that the transfer learning method reaches a similar performance to the model trained directly with EAST using about 1900 discharge. Our results suggest that the proposed method can tackle the challenge in predicting disruptions for future tokamaks like ITER with knowledge learned from existing tokamaks." @default.
- W4384522268 created "2023-07-18" @default.
- W4384522268 creator A5004574678 @default.
- W4384522268 creator A5008757645 @default.
- W4384522268 creator A5012989596 @default.
- W4384522268 creator A5018999058 @default.
- W4384522268 creator A5027428942 @default.
- W4384522268 creator A5031537912 @default.
- W4384522268 creator A5033332590 @default.
- W4384522268 creator A5036277318 @default.
- W4384522268 creator A5046417967 @default.
- W4384522268 creator A5056835912 @default.
- W4384522268 creator A5060099913 @default.
- W4384522268 creator A5071056316 @default.
- W4384522268 creator A5073832324 @default.
- W4384522268 creator A5075204483 @default.
- W4384522268 creator A5087936500 @default.
- W4384522268 date "2023-07-17" @default.
- W4384522268 modified "2023-10-09" @default.
- W4384522268 title "Disruption prediction for future tokamaks using parameter-based transfer learning" @default.
- W4384522268 cites W1569133503 @default.
- W4384522268 cites W1964270584 @default.
- W4384522268 cites W2013993705 @default.
- W4384522268 cites W2017407217 @default.
- W4384522268 cites W2050413758 @default.
- W4384522268 cites W2055426153 @default.
- W4384522268 cites W2075432292 @default.
- W4384522268 cites W2096798184 @default.
- W4384522268 cites W2131953535 @default.
- W4384522268 cites W2140583699 @default.
- W4384522268 cites W2167699253 @default.
- W4384522268 cites W2285344451 @default.
- W4384522268 cites W2487818351 @default.
- W4384522268 cites W2531097963 @default.
- W4384522268 cites W2551254418 @default.
- W4384522268 cites W2736964207 @default.
- W4384522268 cites W2772779338 @default.
- W4384522268 cites W2794556289 @default.
- W4384522268 cites W2884001105 @default.
- W4384522268 cites W2888488724 @default.
- W4384522268 cites W2897391494 @default.
- W4384522268 cites W2913340405 @default.
- W4384522268 cites W2937394206 @default.
- W4384522268 cites W2940188030 @default.
- W4384522268 cites W2952388932 @default.
- W4384522268 cites W2979342888 @default.
- W4384522268 cites W2982690081 @default.
- W4384522268 cites W2990528340 @default.
- W4384522268 cites W2996715081 @default.
- W4384522268 cites W3006820383 @default.
- W4384522268 cites W3009968272 @default.
- W4384522268 cites W3011800961 @default.
- W4384522268 cites W3034479309 @default.
- W4384522268 cites W3045533878 @default.
- W4384522268 cites W3081113320 @default.
- W4384522268 cites W3089214427 @default.
- W4384522268 cites W3106124144 @default.
- W4384522268 cites W3106319445 @default.
- W4384522268 cites W3137134670 @default.
- W4384522268 cites W3194803525 @default.
- W4384522268 cites W3196807746 @default.
- W4384522268 cites W3199865624 @default.
- W4384522268 cites W4205164650 @default.
- W4384522268 cites W4210848170 @default.
- W4384522268 cites W4243788777 @default.
- W4384522268 cites W4294867778 @default.
- W4384522268 cites W4308025419 @default.
- W4384522268 cites W4321480315 @default.
- W4384522268 cites W4367836519 @default.
- W4384522268 doi "https://doi.org/10.1038/s42005-023-01296-9" @default.
- W4384522268 hasPublicationYear "2023" @default.
- W4384522268 type Work @default.
- W4384522268 citedByCount "0" @default.
- W4384522268 crossrefType "journal-article" @default.
- W4384522268 hasAuthorship W4384522268A5004574678 @default.
- W4384522268 hasAuthorship W4384522268A5008757645 @default.
- W4384522268 hasAuthorship W4384522268A5012989596 @default.
- W4384522268 hasAuthorship W4384522268A5018999058 @default.
- W4384522268 hasAuthorship W4384522268A5027428942 @default.
- W4384522268 hasAuthorship W4384522268A5031537912 @default.
- W4384522268 hasAuthorship W4384522268A5033332590 @default.
- W4384522268 hasAuthorship W4384522268A5036277318 @default.
- W4384522268 hasAuthorship W4384522268A5046417967 @default.
- W4384522268 hasAuthorship W4384522268A5056835912 @default.
- W4384522268 hasAuthorship W4384522268A5060099913 @default.
- W4384522268 hasAuthorship W4384522268A5071056316 @default.
- W4384522268 hasAuthorship W4384522268A5073832324 @default.
- W4384522268 hasAuthorship W4384522268A5075204483 @default.
- W4384522268 hasAuthorship W4384522268A5087936500 @default.
- W4384522268 hasBestOaLocation W43845222681 @default.
- W4384522268 hasConcept C106447425 @default.
- W4384522268 hasConcept C116515362 @default.
- W4384522268 hasConcept C116915560 @default.
- W4384522268 hasConcept C119857082 @default.
- W4384522268 hasConcept C121332964 @default.
- W4384522268 hasConcept C127413603 @default.
- W4384522268 hasConcept C150899416 @default.
- W4384522268 hasConcept C154945302 @default.
- W4384522268 hasConcept C173608175 @default.
- W4384522268 hasConcept C184779094 @default.