Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384525853> ?p ?o ?g. }
- W4384525853 endingPage "1150" @default.
- W4384525853 startingPage "1150" @default.
- W4384525853 abstract "The Qinghai–Tibet Plateau region has abundant solar energy, which presents enormous potential for the development of solar power generation. Accurate prediction of solar radiation is crucial for the safe and cost-effective operation of the power grid. Therefore, constructing a suitable ultra-short-term prediction model for the Tibetan Plateau region holds significant importance. This study was based on the autoregressive integrated moving average model (ARIMA), random forest model (RF), and long short-term memory model (LSTM) to construct a prediction model for forecasting the average irradiance for the next 10 min. By locally testing and optimizing the model parameter, the study explored the applicability of each model in different seasons and investigates the impact of factors such as training dataset and prediction time range on model accuracy. The results showed that: (1) the accuracy of the ARIMA model was lower than the persistence model used as a reference model, while both the RF model and LSTM model had higher accuracy than the persistence model; (2) the sample size and distribution of the training dataset significantly affected the accuracy of the models. When both the season (distribution) and sample size were the same, RF achieved the highest accuracy. The optimal sample sizes for ARIMA, RF, and LSTM models in each season were as follows: spring (3564, 1980, 4356), summer (2772, 4752, 2772), autumn (3564, 3564, 4752), and winter (3168, 3168, 4752). (3) The prediction forecast horizon had a significant impact on the model accuracy. As the forecast horizon increased, the errors of all models gradually increased, reaching a peak between 80 and 100 min before slightly decreasing and then continuing to rise. When both the season and forecast horizon were the same, RF had the highest accuracy, with an RMSE lower than ARIMA by 65.6–258.3 W/m2 and lower than LSTM by 3.7–83.3 W/m2. Therefore, machine learning can be used for ultra-short-term forecasting of solar irradiance in the Qinghai–Tibet Plateau region to meet the forecast requirements for solar power generation, providing a reference for similar studies." @default.
- W4384525853 created "2023-07-18" @default.
- W4384525853 creator A5019179678 @default.
- W4384525853 creator A5046513779 @default.
- W4384525853 creator A5085186151 @default.
- W4384525853 creator A5085426106 @default.
- W4384525853 date "2023-07-14" @default.
- W4384525853 modified "2023-09-27" @default.
- W4384525853 title "Construction and Research of Ultra-Short Term Prediction Model of Solar Short Wave Irradiance Suitable for Qinghai–Tibet Plateau" @default.
- W4384525853 cites W1980898496 @default.
- W4384525853 cites W1982503727 @default.
- W4384525853 cites W2041716774 @default.
- W4384525853 cites W2042506099 @default.
- W4384525853 cites W2042511026 @default.
- W4384525853 cites W2043167037 @default.
- W4384525853 cites W2046890513 @default.
- W4384525853 cites W2058580388 @default.
- W4384525853 cites W2059302284 @default.
- W4384525853 cites W2066540152 @default.
- W4384525853 cites W2069268216 @default.
- W4384525853 cites W2078422764 @default.
- W4384525853 cites W2088267500 @default.
- W4384525853 cites W2095048356 @default.
- W4384525853 cites W2117014758 @default.
- W4384525853 cites W2154076338 @default.
- W4384525853 cites W2318638513 @default.
- W4384525853 cites W2339332955 @default.
- W4384525853 cites W2474876138 @default.
- W4384525853 cites W2553152989 @default.
- W4384525853 cites W2777155931 @default.
- W4384525853 cites W2787832800 @default.
- W4384525853 cites W2792326773 @default.
- W4384525853 cites W2794078445 @default.
- W4384525853 cites W2877093701 @default.
- W4384525853 cites W2889323772 @default.
- W4384525853 cites W2890723144 @default.
- W4384525853 cites W2910849319 @default.
- W4384525853 cites W2911964244 @default.
- W4384525853 cites W2955010283 @default.
- W4384525853 cites W2963986342 @default.
- W4384525853 cites W2996173675 @default.
- W4384525853 cites W2996784533 @default.
- W4384525853 cites W2998197160 @default.
- W4384525853 cites W3000855853 @default.
- W4384525853 cites W3004545085 @default.
- W4384525853 cites W3024509612 @default.
- W4384525853 cites W3041954629 @default.
- W4384525853 cites W3080485564 @default.
- W4384525853 cites W3091410142 @default.
- W4384525853 cites W3177441189 @default.
- W4384525853 cites W3185987761 @default.
- W4384525853 cites W3207109864 @default.
- W4384525853 cites W3212575128 @default.
- W4384525853 cites W4212816517 @default.
- W4384525853 cites W4220760486 @default.
- W4384525853 cites W4293761122 @default.
- W4384525853 cites W4294120029 @default.
- W4384525853 cites W4362467178 @default.
- W4384525853 cites W4367311909 @default.
- W4384525853 doi "https://doi.org/10.3390/atmos14071150" @default.
- W4384525853 hasPublicationYear "2023" @default.
- W4384525853 type Work @default.
- W4384525853 citedByCount "0" @default.
- W4384525853 crossrefType "journal-article" @default.
- W4384525853 hasAuthorship W4384525853A5019179678 @default.
- W4384525853 hasAuthorship W4384525853A5046513779 @default.
- W4384525853 hasAuthorship W4384525853A5085186151 @default.
- W4384525853 hasAuthorship W4384525853A5085426106 @default.
- W4384525853 hasBestOaLocation W43845258531 @default.
- W4384525853 hasConcept C105795698 @default.
- W4384525853 hasConcept C121332964 @default.
- W4384525853 hasConcept C151406439 @default.
- W4384525853 hasConcept C153294291 @default.
- W4384525853 hasConcept C159877910 @default.
- W4384525853 hasConcept C163258240 @default.
- W4384525853 hasConcept C205649164 @default.
- W4384525853 hasConcept C22679943 @default.
- W4384525853 hasConcept C24338571 @default.
- W4384525853 hasConcept C2777618391 @default.
- W4384525853 hasConcept C33923547 @default.
- W4384525853 hasConcept C39432304 @default.
- W4384525853 hasConcept C41008148 @default.
- W4384525853 hasConcept C45804977 @default.
- W4384525853 hasConcept C46423501 @default.
- W4384525853 hasConcept C61797465 @default.
- W4384525853 hasConcept C62520636 @default.
- W4384525853 hasConceptScore W4384525853C105795698 @default.
- W4384525853 hasConceptScore W4384525853C121332964 @default.
- W4384525853 hasConceptScore W4384525853C151406439 @default.
- W4384525853 hasConceptScore W4384525853C153294291 @default.
- W4384525853 hasConceptScore W4384525853C159877910 @default.
- W4384525853 hasConceptScore W4384525853C163258240 @default.
- W4384525853 hasConceptScore W4384525853C205649164 @default.
- W4384525853 hasConceptScore W4384525853C22679943 @default.
- W4384525853 hasConceptScore W4384525853C24338571 @default.
- W4384525853 hasConceptScore W4384525853C2777618391 @default.
- W4384525853 hasConceptScore W4384525853C33923547 @default.
- W4384525853 hasConceptScore W4384525853C39432304 @default.