Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384557788> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4384557788 abstract "The few applications used by Small and Medium Scale Enterprises (SMEs’) businesses lack efficiency and the appropriate intelligence to save them from price instability, inventory carrying costs, excess inventory, wrong decision making, inaccurate monitoring of stock levels, etc. through predictive analytics. The study explored various Artificial Intelligence Machine Learning (AI/ML) models and data structure array types that could be used with the day-to-day local weather conditions of low and high temperatures to predict market parameters and aid SMEs with predictive data to use for combating wrong decision-making, inaccurate business monitoring and excess inventory, etc. Among the ML models explored included sequential minimal optimisation, iterative reweighted least-squares, Fan-Chen-Lin support vector regression, linear regression newton method and multivariate linear regression Ordinary least squares for a multivariate linear regression and logistic regression. The models were compiled using visual C# and Accord.Net libraries. Multivariate linear regression Ordinary least squares models recorded the least predictive accuracy loss, for the test quantity prediction test samples, and varying acceptable square loss values, for usage in geo-localised mobile intelligent systems for SME predictions due to their favourable scores. The jagged array overall performed better than the multi-dimensional array on some time and space complexity tests. This work is contributing to the body of knowledge by evaluatively suggesting better data structures and ML models for building intelligent systems in Xamarin forms using C# and small data for the model training for applications in mobile phone systems that will aid SMEs’ in adjusting spending and sales targets." @default.
- W4384557788 created "2023-07-18" @default.
- W4384557788 creator A5014042185 @default.
- W4384557788 creator A5092486076 @default.
- W4384557788 date "2023-07-16" @default.
- W4384557788 modified "2023-09-25" @default.
- W4384557788 title "Considerations of an efficiency-intelligent geo-localised mobile application for personalised SME market predictions" @default.
- W4384557788 cites W2029077406 @default.
- W4384557788 cites W2766347258 @default.
- W4384557788 cites W2769433213 @default.
- W4384557788 cites W2900453322 @default.
- W4384557788 cites W3182706339 @default.
- W4384557788 cites W3195865780 @default.
- W4384557788 doi "https://doi.org/10.1177/00202940231186675" @default.
- W4384557788 hasPublicationYear "2023" @default.
- W4384557788 type Work @default.
- W4384557788 citedByCount "0" @default.
- W4384557788 crossrefType "journal-article" @default.
- W4384557788 hasAuthorship W4384557788A5014042185 @default.
- W4384557788 hasAuthorship W4384557788A5092486076 @default.
- W4384557788 hasBestOaLocation W43845577881 @default.
- W4384557788 hasConcept C119857082 @default.
- W4384557788 hasConcept C124101348 @default.
- W4384557788 hasConcept C149782125 @default.
- W4384557788 hasConcept C151956035 @default.
- W4384557788 hasConcept C154945302 @default.
- W4384557788 hasConcept C161584116 @default.
- W4384557788 hasConcept C2777421447 @default.
- W4384557788 hasConcept C33923547 @default.
- W4384557788 hasConcept C41008148 @default.
- W4384557788 hasConcept C48921125 @default.
- W4384557788 hasConcept C64946054 @default.
- W4384557788 hasConcept C76155785 @default.
- W4384557788 hasConcept C83209312 @default.
- W4384557788 hasConcept C99656134 @default.
- W4384557788 hasConceptScore W4384557788C119857082 @default.
- W4384557788 hasConceptScore W4384557788C124101348 @default.
- W4384557788 hasConceptScore W4384557788C149782125 @default.
- W4384557788 hasConceptScore W4384557788C151956035 @default.
- W4384557788 hasConceptScore W4384557788C154945302 @default.
- W4384557788 hasConceptScore W4384557788C161584116 @default.
- W4384557788 hasConceptScore W4384557788C2777421447 @default.
- W4384557788 hasConceptScore W4384557788C33923547 @default.
- W4384557788 hasConceptScore W4384557788C41008148 @default.
- W4384557788 hasConceptScore W4384557788C48921125 @default.
- W4384557788 hasConceptScore W4384557788C64946054 @default.
- W4384557788 hasConceptScore W4384557788C76155785 @default.
- W4384557788 hasConceptScore W4384557788C83209312 @default.
- W4384557788 hasConceptScore W4384557788C99656134 @default.
- W4384557788 hasLocation W43845577881 @default.
- W4384557788 hasOpenAccess W4384557788 @default.
- W4384557788 hasPrimaryLocation W43845577881 @default.
- W4384557788 hasRelatedWork W1523573682 @default.
- W4384557788 hasRelatedWork W1928281259 @default.
- W4384557788 hasRelatedWork W2077535112 @default.
- W4384557788 hasRelatedWork W2140265721 @default.
- W4384557788 hasRelatedWork W2378624038 @default.
- W4384557788 hasRelatedWork W3156035656 @default.
- W4384557788 hasRelatedWork W3172887576 @default.
- W4384557788 hasRelatedWork W4206811002 @default.
- W4384557788 hasRelatedWork W4327792959 @default.
- W4384557788 hasRelatedWork W4379532240 @default.
- W4384557788 isParatext "false" @default.
- W4384557788 isRetracted "false" @default.
- W4384557788 workType "article" @default.