Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384557831> ?p ?o ?g. }
- W4384557831 endingPage "8221" @default.
- W4384557831 startingPage "8221" @default.
- W4384557831 abstract "Fruit quality assessment plays a crucial role in determining their market value, consumer acceptance, and post-harvest management. In recent years, spectroscopic techniques have gained significant attention as non-destructive methods for evaluating fruit quality. In this study, we propose a novel deep-learning network, called GCNN-LSTM-AT, for the prediction of five important parameters of tangerines using visible and near-infrared spectroscopy (Vis–NIR). The quality attributes include soluble solid content (SSC), total acidity (TA), acid–sugar ratio (A/S), firmness, and Vitamin C (VC). The proposed model combines the strengths of graph convolutional network (GCN), convolutional neural networks (CNNs), and long short-term memory (LSTM) to capture both spatial and sequential dependencies in the spectra data, and incorporates an attention mechanism to enhance the discriminative ability of the model. To investigate the effectiveness and stability of the model, comparisons with three traditional machine-learning algorithms—moving window partial least squares (MWPLS), random forest (RF), and support vector regression (SVR)—and two deep neural networks—DeepSpectra2D and CNN-AT—are provided. The results have shown that the GCNN-LSTM-AT network outperforms other algorithms and models, achieving accurate predictions for SSC (R2: 0.9885, RMSECV: 0.1430 ∘Brix), TA (R2: 0.8075, RMSECV: 0.0868%), A/S (R2: 0.9014, RMSECV: 1.9984), firmness (R2: 0.9472, RMSECV: 0.0294 kg), and VC (R2: 0.7386, RMSECV: 29.4104 mg/100 g) of tangerines." @default.
- W4384557831 created "2023-07-18" @default.
- W4384557831 creator A5019395171 @default.
- W4384557831 creator A5029372685 @default.
- W4384557831 creator A5031767581 @default.
- W4384557831 creator A5049549826 @default.
- W4384557831 creator A5064983719 @default.
- W4384557831 creator A5079784307 @default.
- W4384557831 date "2023-07-15" @default.
- W4384557831 modified "2023-10-16" @default.
- W4384557831 title "Predicting the Quality of Tangerines Using the GCNN-LSTM-AT Network Based on Vis–NIR Spectroscopy" @default.
- W4384557831 cites W1964903133 @default.
- W4384557831 cites W1966649791 @default.
- W4384557831 cites W2043689097 @default.
- W4384557831 cites W2045125597 @default.
- W4384557831 cites W2064675550 @default.
- W4384557831 cites W2096062275 @default.
- W4384557831 cites W2109606373 @default.
- W4384557831 cites W2183341477 @default.
- W4384557831 cites W2194775991 @default.
- W4384557831 cites W2514248728 @default.
- W4384557831 cites W2726275270 @default.
- W4384557831 cites W2909516836 @default.
- W4384557831 cites W2952266823 @default.
- W4384557831 cites W2970353953 @default.
- W4384557831 cites W2982654232 @default.
- W4384557831 cites W3010558195 @default.
- W4384557831 cites W3120509585 @default.
- W4384557831 cites W3129590649 @default.
- W4384557831 cites W3136079846 @default.
- W4384557831 cites W3152858711 @default.
- W4384557831 cites W3157880691 @default.
- W4384557831 cites W3182706339 @default.
- W4384557831 cites W4205928757 @default.
- W4384557831 cites W4224003422 @default.
- W4384557831 cites W4226197162 @default.
- W4384557831 cites W4230418775 @default.
- W4384557831 cites W4291222551 @default.
- W4384557831 cites W4292693079 @default.
- W4384557831 cites W4309004794 @default.
- W4384557831 cites W4376137919 @default.
- W4384557831 doi "https://doi.org/10.3390/app13148221" @default.
- W4384557831 hasPublicationYear "2023" @default.
- W4384557831 type Work @default.
- W4384557831 citedByCount "0" @default.
- W4384557831 crossrefType "journal-article" @default.
- W4384557831 hasAuthorship W4384557831A5019395171 @default.
- W4384557831 hasAuthorship W4384557831A5029372685 @default.
- W4384557831 hasAuthorship W4384557831A5031767581 @default.
- W4384557831 hasAuthorship W4384557831A5049549826 @default.
- W4384557831 hasAuthorship W4384557831A5064983719 @default.
- W4384557831 hasAuthorship W4384557831A5079784307 @default.
- W4384557831 hasBestOaLocation W43845578311 @default.
- W4384557831 hasConcept C105795698 @default.
- W4384557831 hasConcept C108583219 @default.
- W4384557831 hasConcept C119857082 @default.
- W4384557831 hasConcept C12267149 @default.
- W4384557831 hasConcept C132525143 @default.
- W4384557831 hasConcept C153180895 @default.
- W4384557831 hasConcept C154945302 @default.
- W4384557831 hasConcept C169258074 @default.
- W4384557831 hasConcept C22354355 @default.
- W4384557831 hasConcept C33923547 @default.
- W4384557831 hasConcept C41008148 @default.
- W4384557831 hasConcept C60962613 @default.
- W4384557831 hasConcept C80444323 @default.
- W4384557831 hasConcept C81363708 @default.
- W4384557831 hasConcept C97931131 @default.
- W4384557831 hasConceptScore W4384557831C105795698 @default.
- W4384557831 hasConceptScore W4384557831C108583219 @default.
- W4384557831 hasConceptScore W4384557831C119857082 @default.
- W4384557831 hasConceptScore W4384557831C12267149 @default.
- W4384557831 hasConceptScore W4384557831C132525143 @default.
- W4384557831 hasConceptScore W4384557831C153180895 @default.
- W4384557831 hasConceptScore W4384557831C154945302 @default.
- W4384557831 hasConceptScore W4384557831C169258074 @default.
- W4384557831 hasConceptScore W4384557831C22354355 @default.
- W4384557831 hasConceptScore W4384557831C33923547 @default.
- W4384557831 hasConceptScore W4384557831C41008148 @default.
- W4384557831 hasConceptScore W4384557831C60962613 @default.
- W4384557831 hasConceptScore W4384557831C80444323 @default.
- W4384557831 hasConceptScore W4384557831C81363708 @default.
- W4384557831 hasConceptScore W4384557831C97931131 @default.
- W4384557831 hasFunder F4320321001 @default.
- W4384557831 hasIssue "14" @default.
- W4384557831 hasLocation W43845578311 @default.
- W4384557831 hasOpenAccess W4384557831 @default.
- W4384557831 hasPrimaryLocation W43845578311 @default.
- W4384557831 hasRelatedWork W2531896461 @default.
- W4384557831 hasRelatedWork W2551059751 @default.
- W4384557831 hasRelatedWork W2964383635 @default.
- W4384557831 hasRelatedWork W3156786002 @default.
- W4384557831 hasRelatedWork W3193301557 @default.
- W4384557831 hasRelatedWork W3195168932 @default.
- W4384557831 hasRelatedWork W4281616679 @default.
- W4384557831 hasRelatedWork W4311106074 @default.
- W4384557831 hasRelatedWork W4319994054 @default.
- W4384557831 hasRelatedWork W4322727400 @default.