Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384557897> ?p ?o ?g. }
- W4384557897 endingPage "8237" @default.
- W4384557897 startingPage "8237" @default.
- W4384557897 abstract "Road extraction from high-resolution satellite images has become a significant focus in the field of remote sensing image analysis. However, factors such as shadow occlusion and spectral confusion hinder the accuracy and consistency of road extraction in satellite images. To overcome these challenges, this paper presents a multi-scale fusion-based road extraction framework, HRU-Net, which exploits the various scales and resolutions of image features generated during the encoding and decoding processes. First, during the encoding phase, we develop a multi-scale feature fusion module with upsampling capabilities (UMR module) to capture fine details, enhancing shadowed areas and road boundaries. Next, in the decoding phase, we design a multi-feature fusion module (MPF module) to obtain multi-scale spatial information, enabling better differentiation between roads and objects with similar spectral characteristics. The network simultaneously integrates multi-scale feature information during the downsampling process, producing high-resolution feature maps through progressive cross-layer connections, thereby enabling more effective high-resolution prediction tasks. We conduct comparative experiments and quantitative evaluations of the proposed HRU-Net framework against existing algorithms (U-Net, ResNet, DeepLabV3, ResUnet, HRNet) using the Massachusetts Road Dataset. On this basis, this paper selects three network models (U-Net, HRNet, and HRU-Net) to conduct comparative experiments and quantitative evaluations on the DeepGlobe Road Dataset. The experimental results demonstrate that the HRU-Net framework outperforms its counterparts in terms of accuracy and mean intersection over union. In summary, the HRU-Net model proposed in this paper skillfully exploits information from different resolution feature maps, effectively addressing the challenges of discontinuous road extraction and reduced accuracy caused by shadow occlusion and spectral confusion factors. In complex satellite image scenarios, the model accurately extracts comprehensive road regions." @default.
- W4384557897 created "2023-07-18" @default.
- W4384557897 creator A5001252253 @default.
- W4384557897 creator A5005417868 @default.
- W4384557897 creator A5006376214 @default.
- W4384557897 creator A5008222424 @default.
- W4384557897 creator A5012143800 @default.
- W4384557897 creator A5033601702 @default.
- W4384557897 creator A5044631197 @default.
- W4384557897 creator A5064642893 @default.
- W4384557897 creator A5092013514 @default.
- W4384557897 date "2023-07-15" @default.
- W4384557897 modified "2023-09-25" @default.
- W4384557897 title "HRU-Net: High-Resolution Remote Sensing Image Road Extraction Based on Multi-Scale Fusion" @default.
- W4384557897 cites W1837697898 @default.
- W4384557897 cites W1903029394 @default.
- W4384557897 cites W1984288883 @default.
- W4384557897 cites W2029377763 @default.
- W4384557897 cites W2412782625 @default.
- W4384557897 cites W2528305538 @default.
- W4384557897 cites W2547880720 @default.
- W4384557897 cites W2774320778 @default.
- W4384557897 cites W2789876780 @default.
- W4384557897 cites W2890554434 @default.
- W4384557897 cites W2893801697 @default.
- W4384557897 cites W2916798096 @default.
- W4384557897 cites W2962978395 @default.
- W4384557897 cites W2968570763 @default.
- W4384557897 cites W2996355855 @default.
- W4384557897 cites W3021297918 @default.
- W4384557897 cites W3086017879 @default.
- W4384557897 cites W3088134661 @default.
- W4384557897 cites W3111683216 @default.
- W4384557897 cites W3137034425 @default.
- W4384557897 cites W3150573203 @default.
- W4384557897 cites W3167787268 @default.
- W4384557897 cites W3182256037 @default.
- W4384557897 doi "https://doi.org/10.3390/app13148237" @default.
- W4384557897 hasPublicationYear "2023" @default.
- W4384557897 type Work @default.
- W4384557897 citedByCount "0" @default.
- W4384557897 crossrefType "journal-article" @default.
- W4384557897 hasAuthorship W4384557897A5001252253 @default.
- W4384557897 hasAuthorship W4384557897A5005417868 @default.
- W4384557897 hasAuthorship W4384557897A5006376214 @default.
- W4384557897 hasAuthorship W4384557897A5008222424 @default.
- W4384557897 hasAuthorship W4384557897A5012143800 @default.
- W4384557897 hasAuthorship W4384557897A5033601702 @default.
- W4384557897 hasAuthorship W4384557897A5044631197 @default.
- W4384557897 hasAuthorship W4384557897A5064642893 @default.
- W4384557897 hasAuthorship W4384557897A5092013514 @default.
- W4384557897 hasBestOaLocation W43845578971 @default.
- W4384557897 hasConcept C110384440 @default.
- W4384557897 hasConcept C115961682 @default.
- W4384557897 hasConcept C124101348 @default.
- W4384557897 hasConcept C138885662 @default.
- W4384557897 hasConcept C153180895 @default.
- W4384557897 hasConcept C154945302 @default.
- W4384557897 hasConcept C205649164 @default.
- W4384557897 hasConcept C2776401178 @default.
- W4384557897 hasConcept C31972630 @default.
- W4384557897 hasConcept C41008148 @default.
- W4384557897 hasConcept C41895202 @default.
- W4384557897 hasConcept C52622490 @default.
- W4384557897 hasConcept C62649853 @default.
- W4384557897 hasConcept C69744172 @default.
- W4384557897 hasConceptScore W4384557897C110384440 @default.
- W4384557897 hasConceptScore W4384557897C115961682 @default.
- W4384557897 hasConceptScore W4384557897C124101348 @default.
- W4384557897 hasConceptScore W4384557897C138885662 @default.
- W4384557897 hasConceptScore W4384557897C153180895 @default.
- W4384557897 hasConceptScore W4384557897C154945302 @default.
- W4384557897 hasConceptScore W4384557897C205649164 @default.
- W4384557897 hasConceptScore W4384557897C2776401178 @default.
- W4384557897 hasConceptScore W4384557897C31972630 @default.
- W4384557897 hasConceptScore W4384557897C41008148 @default.
- W4384557897 hasConceptScore W4384557897C41895202 @default.
- W4384557897 hasConceptScore W4384557897C52622490 @default.
- W4384557897 hasConceptScore W4384557897C62649853 @default.
- W4384557897 hasConceptScore W4384557897C69744172 @default.
- W4384557897 hasFunder F4320321001 @default.
- W4384557897 hasIssue "14" @default.
- W4384557897 hasLocation W43845578971 @default.
- W4384557897 hasOpenAccess W4384557897 @default.
- W4384557897 hasPrimaryLocation W43845578971 @default.
- W4384557897 hasRelatedWork W2016461833 @default.
- W4384557897 hasRelatedWork W2181461482 @default.
- W4384557897 hasRelatedWork W2370816851 @default.
- W4384557897 hasRelatedWork W2382607599 @default.
- W4384557897 hasRelatedWork W2534909612 @default.
- W4384557897 hasRelatedWork W2546942002 @default.
- W4384557897 hasRelatedWork W2787555990 @default.
- W4384557897 hasRelatedWork W2802455928 @default.
- W4384557897 hasRelatedWork W4281689716 @default.
- W4384557897 hasRelatedWork W4320802741 @default.
- W4384557897 hasVolume "13" @default.
- W4384557897 isParatext "false" @default.
- W4384557897 isRetracted "false" @default.