Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384558220> ?p ?o ?g. }
- W4384558220 endingPage "8232" @default.
- W4384558220 startingPage "8232" @default.
- W4384558220 abstract "Ground-motion simulations provide input time history data required for designing and assessing structures; however, the simulations conducted by the currently available tools only match the design spectrum without verifying if the statistical characteristics of the spectrum and duration are satisfied. A ground-motion simulation software was developed to resolve these issues. The developed software employs machine learning methods to match the amplitude, spectrum, and duration features of the target region. Principal component analysis is employed to extract features from the actual ground-motion database to detect characteristic ground motions and predict the target acceleration amplitude, response spectrum, and duration, based on the response spectrum and duration prediction equations. The results show that the simulated ground motion can match the amplitude, spectrum, and duration characteristics well. Therefore, the simulated ground motion can provide more reasonable input for the structure. Moreover, the developed software provides visualization functions that enable the user to determine the target area and obtain the amplitude field intuitively." @default.
- W4384558220 created "2023-07-18" @default.
- W4384558220 creator A5018969419 @default.
- W4384558220 creator A5025252498 @default.
- W4384558220 creator A5043570362 @default.
- W4384558220 creator A5081755910 @default.
- W4384558220 creator A5088400101 @default.
- W4384558220 date "2023-07-15" @default.
- W4384558220 modified "2023-09-30" @default.
- W4384558220 title "A Machine-Learning-Based Software for the Simulation of Regional Characteristic Ground Motion" @default.
- W4384558220 cites W1538276092 @default.
- W4384558220 cites W1992649778 @default.
- W4384558220 cites W1996533619 @default.
- W4384558220 cites W2002775610 @default.
- W4384558220 cites W2014534616 @default.
- W4384558220 cites W2018079649 @default.
- W4384558220 cites W2030817473 @default.
- W4384558220 cites W2037050471 @default.
- W4384558220 cites W2071484967 @default.
- W4384558220 cites W2091087129 @default.
- W4384558220 cites W2095519592 @default.
- W4384558220 cites W2101586627 @default.
- W4384558220 cites W2119100198 @default.
- W4384558220 cites W2125290000 @default.
- W4384558220 cites W2126105956 @default.
- W4384558220 cites W2135813695 @default.
- W4384558220 cites W2141234150 @default.
- W4384558220 cites W2151148682 @default.
- W4384558220 cites W2167308778 @default.
- W4384558220 cites W2185003434 @default.
- W4384558220 cites W2283974944 @default.
- W4384558220 cites W2619617599 @default.
- W4384558220 cites W2729756742 @default.
- W4384558220 cites W2799479418 @default.
- W4384558220 cites W2891619272 @default.
- W4384558220 cites W2950211799 @default.
- W4384558220 cites W3013416489 @default.
- W4384558220 cites W3031235527 @default.
- W4384558220 cites W3038925597 @default.
- W4384558220 cites W3103467282 @default.
- W4384558220 cites W3116418565 @default.
- W4384558220 cites W3119746349 @default.
- W4384558220 cites W3129838958 @default.
- W4384558220 cites W3140452128 @default.
- W4384558220 cites W3185097082 @default.
- W4384558220 cites W3201346096 @default.
- W4384558220 cites W4210493428 @default.
- W4384558220 cites W4230769750 @default.
- W4384558220 cites W4251087815 @default.
- W4384558220 cites W4283454737 @default.
- W4384558220 cites W4321793651 @default.
- W4384558220 cites W4375819390 @default.
- W4384558220 doi "https://doi.org/10.3390/app13148232" @default.
- W4384558220 hasPublicationYear "2023" @default.
- W4384558220 type Work @default.
- W4384558220 citedByCount "0" @default.
- W4384558220 crossrefType "journal-article" @default.
- W4384558220 hasAuthorship W4384558220A5018969419 @default.
- W4384558220 hasAuthorship W4384558220A5025252498 @default.
- W4384558220 hasAuthorship W4384558220A5043570362 @default.
- W4384558220 hasAuthorship W4384558220A5081755910 @default.
- W4384558220 hasAuthorship W4384558220A5088400101 @default.
- W4384558220 hasBestOaLocation W43845582201 @default.
- W4384558220 hasConcept C104114177 @default.
- W4384558220 hasConcept C112758219 @default.
- W4384558220 hasConcept C117896860 @default.
- W4384558220 hasConcept C120665830 @default.
- W4384558220 hasConcept C121332964 @default.
- W4384558220 hasConcept C127413603 @default.
- W4384558220 hasConcept C154945302 @default.
- W4384558220 hasConcept C180205008 @default.
- W4384558220 hasConcept C199360897 @default.
- W4384558220 hasConcept C24890656 @default.
- W4384558220 hasConcept C2777904410 @default.
- W4384558220 hasConcept C2988284105 @default.
- W4384558220 hasConcept C41008148 @default.
- W4384558220 hasConcept C44154836 @default.
- W4384558220 hasConcept C56625316 @default.
- W4384558220 hasConcept C66938386 @default.
- W4384558220 hasConcept C74650414 @default.
- W4384558220 hasConceptScore W4384558220C104114177 @default.
- W4384558220 hasConceptScore W4384558220C112758219 @default.
- W4384558220 hasConceptScore W4384558220C117896860 @default.
- W4384558220 hasConceptScore W4384558220C120665830 @default.
- W4384558220 hasConceptScore W4384558220C121332964 @default.
- W4384558220 hasConceptScore W4384558220C127413603 @default.
- W4384558220 hasConceptScore W4384558220C154945302 @default.
- W4384558220 hasConceptScore W4384558220C180205008 @default.
- W4384558220 hasConceptScore W4384558220C199360897 @default.
- W4384558220 hasConceptScore W4384558220C24890656 @default.
- W4384558220 hasConceptScore W4384558220C2777904410 @default.
- W4384558220 hasConceptScore W4384558220C2988284105 @default.
- W4384558220 hasConceptScore W4384558220C41008148 @default.
- W4384558220 hasConceptScore W4384558220C44154836 @default.
- W4384558220 hasConceptScore W4384558220C56625316 @default.
- W4384558220 hasConceptScore W4384558220C66938386 @default.
- W4384558220 hasConceptScore W4384558220C74650414 @default.
- W4384558220 hasIssue "14" @default.