Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384559520> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4384559520 endingPage "96" @default.
- W4384559520 startingPage "89" @default.
- W4384559520 abstract "The problem of emotion classification is a complex and non-trivial task of language interpretation due to the natural language structure and its dynamic nature. The significance of the study is in covering the important issue of automatic processing of client feedbacks, collecting opinions and trend-catching. In this work, a number of existing solutions for emotion classification problem were considered, having their shortcomings and advantages illustrated. The evaluation of performance of the considered models was conducted on emotion classification on four emotion classes, namely Happy, Sad, Angry and Others. The model for emotion classification in three-sentence conversations was proposed in this work. The model is based on smileys and word embeddings with domain specificity in state of art conversations on the Internet. The importance of taking into account the information extracted from smileys as an additional data source of emotional coloring is investigated. The model performance is evaluated and compared with language processing model BERT (Bidirectional Encoder Representations from Transformers). The proposed model achieved better performance at classifying emotions comparing to BERT (having F1 score as 78 versus 75). It should be noted, that further study should be performed to enhance the processing by the model of mixed reviews represented by emotion class Others. However, modern performance of models for language representation and understanding did not achieve the human performance. There is a variety of factors to consider when choosing the word embeddings and training methods to design the model architecture." @default.
- W4384559520 created "2023-07-18" @default.
- W4384559520 creator A5071626390 @default.
- W4384559520 creator A5081874034 @default.
- W4384559520 date "2023-07-15" @default.
- W4384559520 modified "2023-10-18" @default.
- W4384559520 title "USING LONG SHORT-TERM MEMORY NETWORKS FOR NATURAL LANGUAGE PROCESSING" @default.
- W4384559520 doi "https://doi.org/10.20998/2079-0023.2023.01.14" @default.
- W4384559520 hasPublicationYear "2023" @default.
- W4384559520 type Work @default.
- W4384559520 citedByCount "0" @default.
- W4384559520 crossrefType "journal-article" @default.
- W4384559520 hasAuthorship W4384559520A5071626390 @default.
- W4384559520 hasAuthorship W4384559520A5081874034 @default.
- W4384559520 hasBestOaLocation W43845595201 @default.
- W4384559520 hasConcept C111919701 @default.
- W4384559520 hasConcept C118505674 @default.
- W4384559520 hasConcept C121332964 @default.
- W4384559520 hasConcept C136197465 @default.
- W4384559520 hasConcept C137293760 @default.
- W4384559520 hasConcept C138885662 @default.
- W4384559520 hasConcept C154945302 @default.
- W4384559520 hasConcept C165801399 @default.
- W4384559520 hasConcept C204321447 @default.
- W4384559520 hasConcept C206310091 @default.
- W4384559520 hasConcept C2777530160 @default.
- W4384559520 hasConcept C28490314 @default.
- W4384559520 hasConcept C41008148 @default.
- W4384559520 hasConcept C41895202 @default.
- W4384559520 hasConcept C62520636 @default.
- W4384559520 hasConcept C66322947 @default.
- W4384559520 hasConcept C66402592 @default.
- W4384559520 hasConcept C90805587 @default.
- W4384559520 hasConceptScore W4384559520C111919701 @default.
- W4384559520 hasConceptScore W4384559520C118505674 @default.
- W4384559520 hasConceptScore W4384559520C121332964 @default.
- W4384559520 hasConceptScore W4384559520C136197465 @default.
- W4384559520 hasConceptScore W4384559520C137293760 @default.
- W4384559520 hasConceptScore W4384559520C138885662 @default.
- W4384559520 hasConceptScore W4384559520C154945302 @default.
- W4384559520 hasConceptScore W4384559520C165801399 @default.
- W4384559520 hasConceptScore W4384559520C204321447 @default.
- W4384559520 hasConceptScore W4384559520C206310091 @default.
- W4384559520 hasConceptScore W4384559520C2777530160 @default.
- W4384559520 hasConceptScore W4384559520C28490314 @default.
- W4384559520 hasConceptScore W4384559520C41008148 @default.
- W4384559520 hasConceptScore W4384559520C41895202 @default.
- W4384559520 hasConceptScore W4384559520C62520636 @default.
- W4384559520 hasConceptScore W4384559520C66322947 @default.
- W4384559520 hasConceptScore W4384559520C66402592 @default.
- W4384559520 hasConceptScore W4384559520C90805587 @default.
- W4384559520 hasIssue "1 (9)" @default.
- W4384559520 hasLocation W43845595201 @default.
- W4384559520 hasOpenAccess W4384559520 @default.
- W4384559520 hasPrimaryLocation W43845595201 @default.
- W4384559520 hasRelatedWork W2338093180 @default.
- W4384559520 hasRelatedWork W2353067490 @default.
- W4384559520 hasRelatedWork W2894707301 @default.
- W4384559520 hasRelatedWork W2909970382 @default.
- W4384559520 hasRelatedWork W2989807370 @default.
- W4384559520 hasRelatedWork W3029927342 @default.
- W4384559520 hasRelatedWork W3206224646 @default.
- W4384559520 hasRelatedWork W3209984204 @default.
- W4384559520 hasRelatedWork W4200241356 @default.
- W4384559520 hasRelatedWork W4307004515 @default.
- W4384559520 isParatext "false" @default.
- W4384559520 isRetracted "false" @default.
- W4384559520 workType "article" @default.