Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384563026> ?p ?o ?g. }
- W4384563026 endingPage "258" @default.
- W4384563026 startingPage "246" @default.
- W4384563026 abstract "Duchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52–54 in Dmd that develops an early-onset cardiac phenotype similar to DMD patients. Here we employed CRISPR-Cas9 delivered intravenously by adeno-associated virus (AAV) vectors to restore functional dystrophin expression via excision or skipping of exon 55. Exon skipping with a solitary guide significantly improved editing outcomes and dystrophin recovery over dual guide excision. Some improvements to genomic and transcript editing levels were observed when the guide dose was enhanced, but dystrophin restoration did not improve considerably. Editing and dystrophin recovery were restricted primarily to cardiac tissue. Remarkably, our exon skipping approach completely prevented onset of the cardiac phenotype in treated mice up to 12 weeks. Thus, our results demonstrate that intravenous delivery of a single-cut CRISPR-Cas9-mediated exon skipping therapy can prevent heart dysfunction in DMD in vivo. Duchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52–54 in Dmd that develops an early-onset cardiac phenotype similar to DMD patients. Here we employed CRISPR-Cas9 delivered intravenously by adeno-associated virus (AAV) vectors to restore functional dystrophin expression via excision or skipping of exon 55. Exon skipping with a solitary guide significantly improved editing outcomes and dystrophin recovery over dual guide excision. Some improvements to genomic and transcript editing levels were observed when the guide dose was enhanced, but dystrophin restoration did not improve considerably. Editing and dystrophin recovery were restricted primarily to cardiac tissue. Remarkably, our exon skipping approach completely prevented onset of the cardiac phenotype in treated mice up to 12 weeks. Thus, our results demonstrate that intravenous delivery of a single-cut CRISPR-Cas9-mediated exon skipping therapy can prevent heart dysfunction in DMD in vivo." @default.
- W4384563026 created "2023-07-18" @default.
- W4384563026 creator A5022123318 @default.
- W4384563026 creator A5041744228 @default.
- W4384563026 creator A5046198958 @default.
- W4384563026 creator A5048893499 @default.
- W4384563026 creator A5049874491 @default.
- W4384563026 creator A5050625889 @default.
- W4384563026 creator A5053211604 @default.
- W4384563026 creator A5054740981 @default.
- W4384563026 creator A5062854676 @default.
- W4384563026 creator A5069002695 @default.
- W4384563026 creator A5080134110 @default.
- W4384563026 creator A5083076825 @default.
- W4384563026 date "2023-09-01" @default.
- W4384563026 modified "2023-10-12" @default.
- W4384563026 title "Prevention of early-onset cardiomyopathy in Dmd exon 52–54 deletion mice by CRISPR-Cas9-mediated exon skipping" @default.
- W4384563026 cites W1850477203 @default.
- W4384563026 cites W1997490017 @default.
- W4384563026 cites W2047015778 @default.
- W4384563026 cites W2066950610 @default.
- W4384563026 cites W2072576628 @default.
- W4384563026 cites W2082623945 @default.
- W4384563026 cites W2102807861 @default.
- W4384563026 cites W2116484895 @default.
- W4384563026 cites W2120307618 @default.
- W4384563026 cites W2137703332 @default.
- W4384563026 cites W2196662084 @default.
- W4384563026 cites W2203460689 @default.
- W4384563026 cites W2208696160 @default.
- W4384563026 cites W2513896518 @default.
- W4384563026 cites W2588637030 @default.
- W4384563026 cites W2604267264 @default.
- W4384563026 cites W2608444169 @default.
- W4384563026 cites W2744732723 @default.
- W4384563026 cites W2767327591 @default.
- W4384563026 cites W2775147596 @default.
- W4384563026 cites W2788314063 @default.
- W4384563026 cites W2793661486 @default.
- W4384563026 cites W2889510460 @default.
- W4384563026 cites W2903482897 @default.
- W4384563026 cites W2914658811 @default.
- W4384563026 cites W2946257249 @default.
- W4384563026 cites W2947486653 @default.
- W4384563026 cites W2948019101 @default.
- W4384563026 cites W2950109307 @default.
- W4384563026 cites W2963604054 @default.
- W4384563026 cites W2978626045 @default.
- W4384563026 cites W3002203125 @default.
- W4384563026 cites W3007566055 @default.
- W4384563026 cites W3008434296 @default.
- W4384563026 cites W3031070702 @default.
- W4384563026 cites W3032206113 @default.
- W4384563026 cites W3034565172 @default.
- W4384563026 cites W3036667822 @default.
- W4384563026 cites W3087452454 @default.
- W4384563026 cites W3096575791 @default.
- W4384563026 cites W3124760643 @default.
- W4384563026 cites W3131782536 @default.
- W4384563026 cites W3136047862 @default.
- W4384563026 cites W3164247953 @default.
- W4384563026 cites W3165587716 @default.
- W4384563026 cites W3169303078 @default.
- W4384563026 cites W3169311152 @default.
- W4384563026 cites W3197635090 @default.
- W4384563026 cites W3198514921 @default.
- W4384563026 cites W3216218281 @default.
- W4384563026 cites W4200595594 @default.
- W4384563026 cites W4206124375 @default.
- W4384563026 cites W4210857182 @default.
- W4384563026 cites W4220692810 @default.
- W4384563026 cites W4220838245 @default.
- W4384563026 cites W4221053681 @default.
- W4384563026 cites W4225625440 @default.
- W4384563026 cites W4289260693 @default.
- W4384563026 cites W4307633692 @default.
- W4384563026 cites W4317437864 @default.
- W4384563026 doi "https://doi.org/10.1016/j.omtm.2023.07.004" @default.
- W4384563026 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37545481" @default.
- W4384563026 hasPublicationYear "2023" @default.
- W4384563026 type Work @default.
- W4384563026 citedByCount "1" @default.
- W4384563026 countsByYear W43845630262023 @default.
- W4384563026 crossrefType "journal-article" @default.
- W4384563026 hasAuthorship W4384563026A5022123318 @default.
- W4384563026 hasAuthorship W4384563026A5041744228 @default.
- W4384563026 hasAuthorship W4384563026A5046198958 @default.
- W4384563026 hasAuthorship W4384563026A5048893499 @default.
- W4384563026 hasAuthorship W4384563026A5049874491 @default.
- W4384563026 hasAuthorship W4384563026A5050625889 @default.
- W4384563026 hasAuthorship W4384563026A5053211604 @default.
- W4384563026 hasAuthorship W4384563026A5054740981 @default.
- W4384563026 hasAuthorship W4384563026A5062854676 @default.
- W4384563026 hasAuthorship W4384563026A5069002695 @default.
- W4384563026 hasAuthorship W4384563026A5080134110 @default.
- W4384563026 hasAuthorship W4384563026A5083076825 @default.
- W4384563026 hasBestOaLocation W43845630261 @default.
- W4384563026 hasConcept C104317684 @default.