Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384563762> ?p ?o ?g. }
- W4384563762 endingPage "100008" @default.
- W4384563762 startingPage "100008" @default.
- W4384563762 abstract "Machine learning (ML) techniques are already widely and increasingly used in diverse applications in science and technology, including computational chemistry. Specifically in computational chemistry, neural networks (NN) and kernel methods such as Gaussian process regressions (GPR) have been increasingly used for the construction of potential functions and functionals for density functional theory. While ML techniques have a number of advantages vs intuition-based models, notably their generality and black-box nature, they are still challenged when faced with high dimensionality of the feature space or low and uneven data density – in part because of their general nature. We review recent works using methods such as NNs and GPR as building blocks of composite methods in the framework of an expansion over orders of coupling. We introduce models using NN or GPR-based components as part of HDMR (high-dimensional model representations)-based structures. HDMR is a formalization of orders-of-coupling representations that include the many-body and N-mode representations well known in computational chemistry and allows, in particular, building all terms from one dataset of arbitrarily distributed data. The resulting HDMR-NN and HDMR-GPR combinations and NN with HDMR-GPR derived neuron activation functions not requiring non-linear optimization enhance machine learning capabilities in high dimensional spaces and or with sparse data." @default.
- W4384563762 created "2023-07-18" @default.
- W4384563762 creator A5042357207 @default.
- W4384563762 creator A5047305720 @default.
- W4384563762 creator A5087797280 @default.
- W4384563762 date "2023-12-01" @default.
- W4384563762 modified "2023-10-05" @default.
- W4384563762 title "Orders of coupling representations as a versatile framework for machine learning from sparse data in high-dimensional spaces" @default.
- W4384563762 cites W1596185547 @default.
- W4384563762 cites W1639564182 @default.
- W4384563762 cites W1911433256 @default.
- W4384563762 cites W1964882117 @default.
- W4384563762 cites W1965449527 @default.
- W4384563762 cites W1966939946 @default.
- W4384563762 cites W1973261199 @default.
- W4384563762 cites W1975997599 @default.
- W4384563762 cites W1977098485 @default.
- W4384563762 cites W1979652247 @default.
- W4384563762 cites W1982029046 @default.
- W4384563762 cites W1983075444 @default.
- W4384563762 cites W1992527220 @default.
- W4384563762 cites W1996014895 @default.
- W4384563762 cites W1997955977 @default.
- W4384563762 cites W1998193373 @default.
- W4384563762 cites W1998242011 @default.
- W4384563762 cites W2001141328 @default.
- W4384563762 cites W2004313618 @default.
- W4384563762 cites W2004732036 @default.
- W4384563762 cites W2005205193 @default.
- W4384563762 cites W2025520081 @default.
- W4384563762 cites W2027197837 @default.
- W4384563762 cites W2053186076 @default.
- W4384563762 cites W2054137409 @default.
- W4384563762 cites W2055526416 @default.
- W4384563762 cites W2057621739 @default.
- W4384563762 cites W2064670646 @default.
- W4384563762 cites W2067050455 @default.
- W4384563762 cites W2068138322 @default.
- W4384563762 cites W2071267590 @default.
- W4384563762 cites W2086146215 @default.
- W4384563762 cites W2088174986 @default.
- W4384563762 cites W2093145699 @default.
- W4384563762 cites W2093625674 @default.
- W4384563762 cites W2100495367 @default.
- W4384563762 cites W2107053834 @default.
- W4384563762 cites W2108995755 @default.
- W4384563762 cites W2116424792 @default.
- W4384563762 cites W2122528760 @default.
- W4384563762 cites W2125410420 @default.
- W4384563762 cites W2140095548 @default.
- W4384563762 cites W2140789286 @default.
- W4384563762 cites W2160338282 @default.
- W4384563762 cites W2230728100 @default.
- W4384563762 cites W2313806457 @default.
- W4384563762 cites W2397139855 @default.
- W4384563762 cites W2524276051 @default.
- W4384563762 cites W2560431302 @default.
- W4384563762 cites W2595516356 @default.
- W4384563762 cites W2746244909 @default.
- W4384563762 cites W2766196708 @default.
- W4384563762 cites W2792351009 @default.
- W4384563762 cites W2804451518 @default.
- W4384563762 cites W2884430236 @default.
- W4384563762 cites W2911351655 @default.
- W4384563762 cites W2923693308 @default.
- W4384563762 cites W2933423299 @default.
- W4384563762 cites W2945964866 @default.
- W4384563762 cites W2963071675 @default.
- W4384563762 cites W2963784900 @default.
- W4384563762 cites W2968558338 @default.
- W4384563762 cites W2970967082 @default.
- W4384563762 cites W2974661190 @default.
- W4384563762 cites W2996448308 @default.
- W4384563762 cites W3011804641 @default.
- W4384563762 cites W3016216537 @default.
- W4384563762 cites W3026094172 @default.
- W4384563762 cites W3037792061 @default.
- W4384563762 cites W3047267065 @default.
- W4384563762 cites W3048571930 @default.
- W4384563762 cites W3068185939 @default.
- W4384563762 cites W3081421564 @default.
- W4384563762 cites W3087674168 @default.
- W4384563762 cites W3090555547 @default.
- W4384563762 cites W3091030757 @default.
- W4384563762 cites W3093036756 @default.
- W4384563762 cites W3096329763 @default.
- W4384563762 cites W3099950071 @default.
- W4384563762 cites W3101643101 @default.
- W4384563762 cites W3104073206 @default.
- W4384563762 cites W3107187061 @default.
- W4384563762 cites W3110245160 @default.
- W4384563762 cites W3110377484 @default.
- W4384563762 cites W3113447514 @default.
- W4384563762 cites W3127369373 @default.
- W4384563762 cites W3159650425 @default.
- W4384563762 cites W3161867215 @default.
- W4384563762 cites W3174915769 @default.
- W4384563762 cites W3178652718 @default.