Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384643792> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4384643792 abstract "Large language models (LLMs), such as GPT-3 and GPT-4, have demonstrated exceptional performance in various natural language processing tasks and have shown the ability to solve certain reasoning problems. However, their reasoning capabilities are limited and relatively shallow, despite the application of various prompting techniques. In contrast, formal logic is adept at handling complex reasoning, but translating natural language descriptions into formal logic is a challenging task that non-experts struggle with. This paper proposes a neuro-symbolic method that combines the strengths of large language models and answer set programming. Specifically, we employ an LLM to transform natural language descriptions of logic puzzles into answer set programs. We carefully design prompts for an LLM to convert natural language descriptions into answer set programs in a step by step manner. Surprisingly, with just a few in-context learning examples, LLMs can generate reasonably complex answer set programs. The majority of errors made are relatively simple and can be easily corrected by humans, thus enabling LLMs to effectively assist in the creation of answer set programs." @default.
- W4384643792 created "2023-07-19" @default.
- W4384643792 creator A5017332670 @default.
- W4384643792 creator A5076453478 @default.
- W4384643792 creator A5084517969 @default.
- W4384643792 date "2023-07-14" @default.
- W4384643792 modified "2023-10-18" @default.
- W4384643792 title "Leveraging Large Language Models to Generate Answer Set Programs" @default.
- W4384643792 doi "https://doi.org/10.48550/arxiv.2307.07699" @default.
- W4384643792 hasPublicationYear "2023" @default.
- W4384643792 type Work @default.
- W4384643792 citedByCount "0" @default.
- W4384643792 crossrefType "posted-content" @default.
- W4384643792 hasAuthorship W4384643792A5017332670 @default.
- W4384643792 hasAuthorship W4384643792A5076453478 @default.
- W4384643792 hasAuthorship W4384643792A5084517969 @default.
- W4384643792 hasBestOaLocation W43846437921 @default.
- W4384643792 hasConcept C127413603 @default.
- W4384643792 hasConcept C128838566 @default.
- W4384643792 hasConcept C129353971 @default.
- W4384643792 hasConcept C151730666 @default.
- W4384643792 hasConcept C154945302 @default.
- W4384643792 hasConcept C177264268 @default.
- W4384643792 hasConcept C182620335 @default.
- W4384643792 hasConcept C195324797 @default.
- W4384643792 hasConcept C199360897 @default.
- W4384643792 hasConcept C201995342 @default.
- W4384643792 hasConcept C204321447 @default.
- W4384643792 hasConcept C2779343474 @default.
- W4384643792 hasConcept C2779439875 @default.
- W4384643792 hasConcept C2780451532 @default.
- W4384643792 hasConcept C41008148 @default.
- W4384643792 hasConcept C67463725 @default.
- W4384643792 hasConcept C83479923 @default.
- W4384643792 hasConcept C86803240 @default.
- W4384643792 hasConceptScore W4384643792C127413603 @default.
- W4384643792 hasConceptScore W4384643792C128838566 @default.
- W4384643792 hasConceptScore W4384643792C129353971 @default.
- W4384643792 hasConceptScore W4384643792C151730666 @default.
- W4384643792 hasConceptScore W4384643792C154945302 @default.
- W4384643792 hasConceptScore W4384643792C177264268 @default.
- W4384643792 hasConceptScore W4384643792C182620335 @default.
- W4384643792 hasConceptScore W4384643792C195324797 @default.
- W4384643792 hasConceptScore W4384643792C199360897 @default.
- W4384643792 hasConceptScore W4384643792C201995342 @default.
- W4384643792 hasConceptScore W4384643792C204321447 @default.
- W4384643792 hasConceptScore W4384643792C2779343474 @default.
- W4384643792 hasConceptScore W4384643792C2779439875 @default.
- W4384643792 hasConceptScore W4384643792C2780451532 @default.
- W4384643792 hasConceptScore W4384643792C41008148 @default.
- W4384643792 hasConceptScore W4384643792C67463725 @default.
- W4384643792 hasConceptScore W4384643792C83479923 @default.
- W4384643792 hasConceptScore W4384643792C86803240 @default.
- W4384643792 hasLocation W43846437921 @default.
- W4384643792 hasOpenAccess W4384643792 @default.
- W4384643792 hasPrimaryLocation W43846437921 @default.
- W4384643792 hasRelatedWork W1821791255 @default.
- W4384643792 hasRelatedWork W2060410964 @default.
- W4384643792 hasRelatedWork W2116971481 @default.
- W4384643792 hasRelatedWork W2613467614 @default.
- W4384643792 hasRelatedWork W2896160555 @default.
- W4384643792 hasRelatedWork W2899496522 @default.
- W4384643792 hasRelatedWork W2950521972 @default.
- W4384643792 hasRelatedWork W3152841780 @default.
- W4384643792 hasRelatedWork W4214603411 @default.
- W4384643792 hasRelatedWork W4285069607 @default.
- W4384643792 isParatext "false" @default.
- W4384643792 isRetracted "false" @default.
- W4384643792 workType "article" @default.