Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384643841> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4384643841 abstract "We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter $lambda>0$. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete $Delta$-regular tree for all $lambda$. However, Restrepo et al. (2014) showed that for sufficiently large $lambda$ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of $O(n)$ for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for $lambdaleq .44$ we prove an optimal mixing time bound of $O(nlog{n})$. We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree $Delta$. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order $lambda=O(1/Delta)$. Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof." @default.
- W4384643841 created "2023-07-19" @default.
- W4384643841 creator A5026424164 @default.
- W4384643841 creator A5051363868 @default.
- W4384643841 creator A5083906038 @default.
- W4384643841 creator A5088287514 @default.
- W4384643841 date "2023-07-15" @default.
- W4384643841 modified "2023-10-18" @default.
- W4384643841 title "Optimal Mixing via Tensorization for Random Independent Sets on Arbitrary Trees" @default.
- W4384643841 doi "https://doi.org/10.48550/arxiv.2307.07727" @default.
- W4384643841 hasPublicationYear "2023" @default.
- W4384643841 type Work @default.
- W4384643841 citedByCount "0" @default.
- W4384643841 crossrefType "posted-content" @default.
- W4384643841 hasAuthorship W4384643841A5026424164 @default.
- W4384643841 hasAuthorship W4384643841A5051363868 @default.
- W4384643841 hasAuthorship W4384643841A5083906038 @default.
- W4384643841 hasAuthorship W4384643841A5088287514 @default.
- W4384643841 hasBestOaLocation W43846438411 @default.
- W4384643841 hasConcept C105795698 @default.
- W4384643841 hasConcept C113174947 @default.
- W4384643841 hasConcept C114614502 @default.
- W4384643841 hasConcept C118615104 @default.
- W4384643841 hasConcept C120665830 @default.
- W4384643841 hasConcept C121332964 @default.
- W4384643841 hasConcept C134306372 @default.
- W4384643841 hasConcept C138777275 @default.
- W4384643841 hasConcept C191486275 @default.
- W4384643841 hasConcept C207467116 @default.
- W4384643841 hasConcept C24890656 @default.
- W4384643841 hasConcept C2524010 @default.
- W4384643841 hasConcept C2775997480 @default.
- W4384643841 hasConcept C2778113609 @default.
- W4384643841 hasConcept C2778114796 @default.
- W4384643841 hasConcept C2780708879 @default.
- W4384643841 hasConcept C33923547 @default.
- W4384643841 hasConcept C34388435 @default.
- W4384643841 hasConcept C62520636 @default.
- W4384643841 hasConcept C77553402 @default.
- W4384643841 hasConcept C98763669 @default.
- W4384643841 hasConceptScore W4384643841C105795698 @default.
- W4384643841 hasConceptScore W4384643841C113174947 @default.
- W4384643841 hasConceptScore W4384643841C114614502 @default.
- W4384643841 hasConceptScore W4384643841C118615104 @default.
- W4384643841 hasConceptScore W4384643841C120665830 @default.
- W4384643841 hasConceptScore W4384643841C121332964 @default.
- W4384643841 hasConceptScore W4384643841C134306372 @default.
- W4384643841 hasConceptScore W4384643841C138777275 @default.
- W4384643841 hasConceptScore W4384643841C191486275 @default.
- W4384643841 hasConceptScore W4384643841C207467116 @default.
- W4384643841 hasConceptScore W4384643841C24890656 @default.
- W4384643841 hasConceptScore W4384643841C2524010 @default.
- W4384643841 hasConceptScore W4384643841C2775997480 @default.
- W4384643841 hasConceptScore W4384643841C2778113609 @default.
- W4384643841 hasConceptScore W4384643841C2778114796 @default.
- W4384643841 hasConceptScore W4384643841C2780708879 @default.
- W4384643841 hasConceptScore W4384643841C33923547 @default.
- W4384643841 hasConceptScore W4384643841C34388435 @default.
- W4384643841 hasConceptScore W4384643841C62520636 @default.
- W4384643841 hasConceptScore W4384643841C77553402 @default.
- W4384643841 hasConceptScore W4384643841C98763669 @default.
- W4384643841 hasLocation W43846438411 @default.
- W4384643841 hasOpenAccess W4384643841 @default.
- W4384643841 hasPrimaryLocation W43846438411 @default.
- W4384643841 hasRelatedWork W1509459817 @default.
- W4384643841 hasRelatedWork W1604715540 @default.
- W4384643841 hasRelatedWork W1623579764 @default.
- W4384643841 hasRelatedWork W1871156538 @default.
- W4384643841 hasRelatedWork W2049968816 @default.
- W4384643841 hasRelatedWork W2951197944 @default.
- W4384643841 hasRelatedWork W2964207094 @default.
- W4384643841 hasRelatedWork W3084636652 @default.
- W4384643841 hasRelatedWork W3150321003 @default.
- W4384643841 hasRelatedWork W3202753626 @default.
- W4384643841 isParatext "false" @default.
- W4384643841 isRetracted "false" @default.
- W4384643841 workType "article" @default.