Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384644549> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4384644549 abstract "Serendipity is a notion that means an unexpected but valuable discovery. Due to its elusive and subjective nature, serendipity is difficult to study even with today's advances in machine learning and deep learning techniques. Both ground truth data collecting and model developing are the open research questions. This paper addresses both the data and the model challenges for identifying serendipity in recommender systems. For the ground truth data collecting, it proposes a new and scalable approach by using both user generated reviews and a crowd sourcing method. The result is a large-scale ground truth data on serendipity. For model developing, it designed a self-enhanced module to learn the fine-grained facets of serendipity in order to mitigate the inherent data sparsity problem in any serendipity ground truth dataset. The self-enhanced module is general enough to be applied with many base deep learning models for serendipity. A series of experiments have been conducted. As the result, a base deep learning model trained on our collected ground truth data, as well as with the help of the self-enhanced module, outperforms the state-of-the-art baseline models in predicting serendipity." @default.
- W4384644549 created "2023-07-19" @default.
- W4384644549 creator A5042363363 @default.
- W4384644549 creator A5043237792 @default.
- W4384644549 creator A5069430572 @default.
- W4384644549 date "2023-07-18" @default.
- W4384644549 modified "2023-10-01" @default.
- W4384644549 title "Wisdom of Crowds and Fine-Grained Learning for Serendipity Recommendations" @default.
- W4384644549 cites W1587002425 @default.
- W4384644549 cites W1971040550 @default.
- W4384644549 cites W2027731328 @default.
- W4384644549 cites W2053799969 @default.
- W4384644549 cites W2154428221 @default.
- W4384644549 cites W2219888463 @default.
- W4384644549 cites W2802223636 @default.
- W4384644549 cites W2811138351 @default.
- W4384644549 cites W2896873311 @default.
- W4384644549 cites W2963367478 @default.
- W4384644549 cites W2984100107 @default.
- W4384644549 cites W2984626257 @default.
- W4384644549 cites W3005071803 @default.
- W4384644549 cites W3012916621 @default.
- W4384644549 cites W3025937915 @default.
- W4384644549 cites W3047590354 @default.
- W4384644549 cites W3088072029 @default.
- W4384644549 cites W3210224600 @default.
- W4384644549 doi "https://doi.org/10.1145/3539618.3591787" @default.
- W4384644549 hasPublicationYear "2023" @default.
- W4384644549 type Work @default.
- W4384644549 citedByCount "1" @default.
- W4384644549 countsByYear W43846445492023 @default.
- W4384644549 crossrefType "proceedings-article" @default.
- W4384644549 hasAuthorship W4384644549A5042363363 @default.
- W4384644549 hasAuthorship W4384644549A5043237792 @default.
- W4384644549 hasAuthorship W4384644549A5069430572 @default.
- W4384644549 hasConcept C108583219 @default.
- W4384644549 hasConcept C111472728 @default.
- W4384644549 hasConcept C119857082 @default.
- W4384644549 hasConcept C138885662 @default.
- W4384644549 hasConcept C146849305 @default.
- W4384644549 hasConcept C154945302 @default.
- W4384644549 hasConcept C15744967 @default.
- W4384644549 hasConcept C2522767166 @default.
- W4384644549 hasConcept C2777852691 @default.
- W4384644549 hasConcept C2777877512 @default.
- W4384644549 hasConcept C2779119418 @default.
- W4384644549 hasConcept C38652104 @default.
- W4384644549 hasConcept C41008148 @default.
- W4384644549 hasConcept C46312422 @default.
- W4384644549 hasConcept C48044578 @default.
- W4384644549 hasConcept C77088390 @default.
- W4384644549 hasConceptScore W4384644549C108583219 @default.
- W4384644549 hasConceptScore W4384644549C111472728 @default.
- W4384644549 hasConceptScore W4384644549C119857082 @default.
- W4384644549 hasConceptScore W4384644549C138885662 @default.
- W4384644549 hasConceptScore W4384644549C146849305 @default.
- W4384644549 hasConceptScore W4384644549C154945302 @default.
- W4384644549 hasConceptScore W4384644549C15744967 @default.
- W4384644549 hasConceptScore W4384644549C2522767166 @default.
- W4384644549 hasConceptScore W4384644549C2777852691 @default.
- W4384644549 hasConceptScore W4384644549C2777877512 @default.
- W4384644549 hasConceptScore W4384644549C2779119418 @default.
- W4384644549 hasConceptScore W4384644549C38652104 @default.
- W4384644549 hasConceptScore W4384644549C41008148 @default.
- W4384644549 hasConceptScore W4384644549C46312422 @default.
- W4384644549 hasConceptScore W4384644549C48044578 @default.
- W4384644549 hasConceptScore W4384644549C77088390 @default.
- W4384644549 hasLocation W43846445491 @default.
- W4384644549 hasOpenAccess W4384644549 @default.
- W4384644549 hasPrimaryLocation W43846445491 @default.
- W4384644549 hasRelatedWork W3014300295 @default.
- W4384644549 hasRelatedWork W3164822677 @default.
- W4384644549 hasRelatedWork W4223943233 @default.
- W4384644549 hasRelatedWork W4225161397 @default.
- W4384644549 hasRelatedWork W4250304930 @default.
- W4384644549 hasRelatedWork W4312200629 @default.
- W4384644549 hasRelatedWork W4360585206 @default.
- W4384644549 hasRelatedWork W4364306694 @default.
- W4384644549 hasRelatedWork W4380075502 @default.
- W4384644549 hasRelatedWork W4380086463 @default.
- W4384644549 isParatext "false" @default.
- W4384644549 isRetracted "false" @default.
- W4384644549 workType "article" @default.