Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384649021> ?p ?o ?g. }
- W4384649021 abstract "A staple of Bayesian model comparison and hypothesis testing Bayes factors are often used to quantify the relative predictive performance of two rival hypotheses. The computation of Bayes factors can be challenging, however, and this has contributed to the popularity of convenient approximations such as the Bayesian information criterion (BIC). Unfortunately, these approximations can fail in the case of informed prior distributions. Here, we address this problem by outlining an approximation to informed Bayes factors for a focal parameter . The approximation is computationally simple and requires only the maximum likelihood estimate and its standard error. The approximation uses an estimated likelihood of and assumes that the posterior distribution for is unaffected by the choice of prior distribution for the nuisance parameters. The resulting Bayes factor for the null hypothesis versus the alternative hypothesis is then easily obtained using the Savage–Dickey density ratio. Three real‐data examples highlight the speed and closeness of the approximation compared with bridge sampling and Laplace's method. The proposed approximation facilitates Bayesian reanalyses of standard frequentist results, encourages application of Bayesian tests with informed priors, and alleviates the computational challenges that often frustrate both Bayesian sensitivity analyses and Bayes factor design analyses. The approximation is shown to suffer under small sample sizes and when the posterior distribution of the focal parameter is substantially influenced by the prior distributions on the nuisance parameters. The proposed methodology may also be used to approximate the posterior distribution for under ." @default.
- W4384649021 created "2023-07-19" @default.
- W4384649021 creator A5034334189 @default.
- W4384649021 creator A5063079579 @default.
- W4384649021 date "2023-07-18" @default.
- W4384649021 modified "2023-10-17" @default.
- W4384649021 title "A general approximation to nested Bayes factors with informed priors" @default.
- W4384649021 cites W1967485420 @default.
- W4384649021 cites W1968371014 @default.
- W4384649021 cites W1985593448 @default.
- W4384649021 cites W1985804706 @default.
- W4384649021 cites W1987540742 @default.
- W4384649021 cites W1992442793 @default.
- W4384649021 cites W1996356638 @default.
- W4384649021 cites W2007178835 @default.
- W4384649021 cites W2017696952 @default.
- W4384649021 cites W2025720061 @default.
- W4384649021 cites W2039640683 @default.
- W4384649021 cites W2041545409 @default.
- W4384649021 cites W2053675401 @default.
- W4384649021 cites W2064060303 @default.
- W4384649021 cites W2070659891 @default.
- W4384649021 cites W2078864646 @default.
- W4384649021 cites W2082162767 @default.
- W4384649021 cites W2106706098 @default.
- W4384649021 cites W2122986822 @default.
- W4384649021 cites W2124923373 @default.
- W4384649021 cites W2128585330 @default.
- W4384649021 cites W2132352600 @default.
- W4384649021 cites W2142635246 @default.
- W4384649021 cites W2155449815 @default.
- W4384649021 cites W2167796542 @default.
- W4384649021 cites W2168175751 @default.
- W4384649021 cites W2203714058 @default.
- W4384649021 cites W2335953718 @default.
- W4384649021 cites W2491633544 @default.
- W4384649021 cites W2543067875 @default.
- W4384649021 cites W2598750737 @default.
- W4384649021 cites W2602422862 @default.
- W4384649021 cites W2606193717 @default.
- W4384649021 cites W2729207627 @default.
- W4384649021 cites W2736848882 @default.
- W4384649021 cites W2892883002 @default.
- W4384649021 cites W2897117039 @default.
- W4384649021 cites W2897122296 @default.
- W4384649021 cites W2909763451 @default.
- W4384649021 cites W2911808884 @default.
- W4384649021 cites W2963503496 @default.
- W4384649021 cites W3001945457 @default.
- W4384649021 cites W3037007306 @default.
- W4384649021 cites W3044994444 @default.
- W4384649021 cites W3098657762 @default.
- W4384649021 cites W3101515896 @default.
- W4384649021 cites W3123545922 @default.
- W4384649021 cites W3175120262 @default.
- W4384649021 cites W3196517092 @default.
- W4384649021 cites W3216838998 @default.
- W4384649021 cites W4206426577 @default.
- W4384649021 cites W4211177544 @default.
- W4384649021 cites W4212788538 @default.
- W4384649021 cites W4253072502 @default.
- W4384649021 cites W4255950906 @default.
- W4384649021 cites W4280602367 @default.
- W4384649021 cites W4286685180 @default.
- W4384649021 cites W4295517660 @default.
- W4384649021 cites W4360613691 @default.
- W4384649021 cites W4385628968 @default.
- W4384649021 cites W76274448 @default.
- W4384649021 doi "https://doi.org/10.1002/sta4.600" @default.
- W4384649021 hasPublicationYear "2023" @default.
- W4384649021 type Work @default.
- W4384649021 citedByCount "0" @default.
- W4384649021 crossrefType "journal-article" @default.
- W4384649021 hasAuthorship W4384649021A5034334189 @default.
- W4384649021 hasAuthorship W4384649021A5063079579 @default.
- W4384649021 hasBestOaLocation W43846490211 @default.
- W4384649021 hasConcept C105795698 @default.
- W4384649021 hasConcept C107673813 @default.
- W4384649021 hasConcept C142291917 @default.
- W4384649021 hasConcept C149782125 @default.
- W4384649021 hasConcept C160234255 @default.
- W4384649021 hasConcept C162376815 @default.
- W4384649021 hasConcept C177769412 @default.
- W4384649021 hasConcept C207201462 @default.
- W4384649021 hasConcept C33923547 @default.
- W4384649021 hasConcept C37903108 @default.
- W4384649021 hasConcept C57830394 @default.
- W4384649021 hasConcept C95923904 @default.
- W4384649021 hasConcept C99087107 @default.
- W4384649021 hasConceptScore W4384649021C105795698 @default.
- W4384649021 hasConceptScore W4384649021C107673813 @default.
- W4384649021 hasConceptScore W4384649021C142291917 @default.
- W4384649021 hasConceptScore W4384649021C149782125 @default.
- W4384649021 hasConceptScore W4384649021C160234255 @default.
- W4384649021 hasConceptScore W4384649021C162376815 @default.
- W4384649021 hasConceptScore W4384649021C177769412 @default.
- W4384649021 hasConceptScore W4384649021C207201462 @default.
- W4384649021 hasConceptScore W4384649021C33923547 @default.
- W4384649021 hasConceptScore W4384649021C37903108 @default.
- W4384649021 hasConceptScore W4384649021C57830394 @default.