Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384661486> ?p ?o ?g. }
- W4384661486 endingPage "e559" @default.
- W4384661486 startingPage "e551" @default.
- W4384661486 abstract "BackgroundPheochromocytomas and paragangliomas have up to a 20% rate of metastatic disease that cannot be reliably predicted. This study prospectively assessed whether the dopamine metabolite, methoxytyramine, might predict metastatic disease, whether predictions might be improved using machine learning models that incorporate other features, and how machine learning-based predictions compare with predictions made by specialists in the field.MethodsIn this machine learning modelling study, we used cross-sectional cohort data from the PMT trial, based in Germany, Poland, and the Netherlands, to prospectively examine the utility of methoxytyramine to predict metastatic disease in 267 patients with pheochromocytoma or paraganglioma and positive biochemical test results at initial screening. Another retrospective dataset of 493 patients with these tumors enrolled under clinical protocols at National Institutes of Health (00-CH-0093) and the Netherlands (PRESCRIPT trial) was used to train and validate machine learning models according to selections of additional features. The best performing machine learning models were then externally validated using data for all patients in the PMT trial. For comparison, 12 specialists provided predictions of metastatic disease using data from the training and external validation datasets.FindingsProspective predictions indicated that plasma methoxytyramine could identify metastatic disease at sensitivities of 52% and specificities of 85%. The best performing machine learning model was based on an ensemble tree classifier algorithm that used nine features: plasma methoxytyramine, metanephrine, normetanephrine, age, sex, previous history of pheochromocytoma or paraganglioma, location and size of primary tumours, and presence of multifocal disease. This model had an area under the receiver operating characteristic curve of 0·942 (95% CI 0·894–0·969) that was larger (p<0·0001) than that of the best performing specialist before (0·815, 0·778–0·853) and after (0·812, 0·781–0·854) provision of SDHB variant data. Sensitivity for prediction of metastatic disease in the external validation cohort reached 83% at a specificity of 92%.InterpretationAlthough methoxytyramine has some utility for prediction of metastatic pheochromocytomas and paragangliomas, sensitivity is limited. Predictive value is considerably enhanced with machine learning models that incorporate our nine recommended features. Our final model provides a preoperative approach to predict metastases in patients with pheochromocytomas and paragangliomas, and thereby guide individualised patient management and follow-up.FundingDeutsche Forschungsgemeinschaft." @default.
- W4384661486 created "2023-07-20" @default.
- W4384661486 creator A5005313542 @default.
- W4384661486 creator A5005679973 @default.
- W4384661486 creator A5006906048 @default.
- W4384661486 creator A5007794291 @default.
- W4384661486 creator A5014771501 @default.
- W4384661486 creator A5016606339 @default.
- W4384661486 creator A5021852122 @default.
- W4384661486 creator A5028135050 @default.
- W4384661486 creator A5029003117 @default.
- W4384661486 creator A5041910578 @default.
- W4384661486 creator A5046768397 @default.
- W4384661486 creator A5047413937 @default.
- W4384661486 creator A5047986279 @default.
- W4384661486 creator A5048446979 @default.
- W4384661486 creator A5055550625 @default.
- W4384661486 creator A5059545146 @default.
- W4384661486 creator A5064807965 @default.
- W4384661486 creator A5065460222 @default.
- W4384661486 creator A5068868243 @default.
- W4384661486 creator A5069344737 @default.
- W4384661486 creator A5078985432 @default.
- W4384661486 creator A5079200195 @default.
- W4384661486 creator A5090455680 @default.
- W4384661486 date "2023-09-01" @default.
- W4384661486 modified "2023-10-13" @default.
- W4384661486 title "Prediction of metastatic pheochromocytoma and paraganglioma: a machine learning modelling study using data from a cross-sectional cohort" @default.
- W4384661486 cites W2011457427 @default.
- W4384661486 cites W2052953554 @default.
- W4384661486 cites W2057275256 @default.
- W4384661486 cites W2057451047 @default.
- W4384661486 cites W2061662711 @default.
- W4384661486 cites W2081855169 @default.
- W4384661486 cites W2098044946 @default.
- W4384661486 cites W2099532184 @default.
- W4384661486 cites W2142599772 @default.
- W4384661486 cites W2153367841 @default.
- W4384661486 cites W2184486774 @default.
- W4384661486 cites W2322738793 @default.
- W4384661486 cites W2517374546 @default.
- W4384661486 cites W2605292652 @default.
- W4384661486 cites W2758348074 @default.
- W4384661486 cites W2809159512 @default.
- W4384661486 cites W2909229977 @default.
- W4384661486 cites W2914017486 @default.
- W4384661486 cites W2944988359 @default.
- W4384661486 cites W2967444033 @default.
- W4384661486 cites W2978516717 @default.
- W4384661486 cites W2995887567 @default.
- W4384661486 cites W3009785512 @default.
- W4384661486 cites W3014338479 @default.
- W4384661486 cites W3025592089 @default.
- W4384661486 cites W3081691533 @default.
- W4384661486 cites W3199969270 @default.
- W4384661486 cites W4220716887 @default.
- W4384661486 cites W4225164047 @default.
- W4384661486 cites W4250364331 @default.
- W4384661486 cites W4300690595 @default.
- W4384661486 cites W4361794550 @default.
- W4384661486 doi "https://doi.org/10.1016/s2589-7500(23)00094-8" @default.
- W4384661486 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37474439" @default.
- W4384661486 hasPublicationYear "2023" @default.
- W4384661486 type Work @default.
- W4384661486 citedByCount "0" @default.
- W4384661486 crossrefType "journal-article" @default.
- W4384661486 hasAuthorship W4384661486A5005313542 @default.
- W4384661486 hasAuthorship W4384661486A5005679973 @default.
- W4384661486 hasAuthorship W4384661486A5006906048 @default.
- W4384661486 hasAuthorship W4384661486A5007794291 @default.
- W4384661486 hasAuthorship W4384661486A5014771501 @default.
- W4384661486 hasAuthorship W4384661486A5016606339 @default.
- W4384661486 hasAuthorship W4384661486A5021852122 @default.
- W4384661486 hasAuthorship W4384661486A5028135050 @default.
- W4384661486 hasAuthorship W4384661486A5029003117 @default.
- W4384661486 hasAuthorship W4384661486A5041910578 @default.
- W4384661486 hasAuthorship W4384661486A5046768397 @default.
- W4384661486 hasAuthorship W4384661486A5047413937 @default.
- W4384661486 hasAuthorship W4384661486A5047986279 @default.
- W4384661486 hasAuthorship W4384661486A5048446979 @default.
- W4384661486 hasAuthorship W4384661486A5055550625 @default.
- W4384661486 hasAuthorship W4384661486A5059545146 @default.
- W4384661486 hasAuthorship W4384661486A5064807965 @default.
- W4384661486 hasAuthorship W4384661486A5065460222 @default.
- W4384661486 hasAuthorship W4384661486A5068868243 @default.
- W4384661486 hasAuthorship W4384661486A5069344737 @default.
- W4384661486 hasAuthorship W4384661486A5078985432 @default.
- W4384661486 hasAuthorship W4384661486A5079200195 @default.
- W4384661486 hasAuthorship W4384661486A5090455680 @default.
- W4384661486 hasBestOaLocation W43846614861 @default.
- W4384661486 hasConcept C119857082 @default.
- W4384661486 hasConcept C126322002 @default.
- W4384661486 hasConcept C126838900 @default.
- W4384661486 hasConcept C154945302 @default.
- W4384661486 hasConcept C2776734335 @default.
- W4384661486 hasConcept C2779505177 @default.
- W4384661486 hasConcept C2779512018 @default.
- W4384661486 hasConcept C41008148 @default.