Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384661593> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4384661593 endingPage "345205" @default.
- W4384661593 startingPage "345205" @default.
- W4384661593 abstract "Abstract We investigate the real Lie algebra of first-order differential operators with polynomial coefficients, which is subject to the following requirements. (1) The Lie algebra should admit a basis of differential operators with homogeneous polynomial coefficients of degree up to and including three. (2) The generator of the algebra must include the translation operators <?CDATA $partial_k$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi mathvariant=normal>∂</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:math> for all the variables <?CDATA $x_1,ldots,x_k$?> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML overflow=scroll> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:math> . (3) The Lie algebra is the smallest indecomposable Lie algebra satisfying (1) and (2). It turns out to be a 39-dimensional Lie algebra in six variables ( k = 6) and the construction of this algebra is also the simplest possible case in the general construction of the Lie algebras of the transitively differential groups introduced by Guillemin and Sternberg in 1964 involving the coefficients of degree 3. Those algebras and various subalgebras have similarities with algebras related to different applications in physics such as the Schrödinger, Conformal and Galilei algebras with and without central extension. The paper is devoted to the presentation of the structure and different decompositions of the Lie algebra under investigation. It is also devoted to the presentation of relevant Lie subalgebras and the construction of their Casimir invariants using different methods. We rely, in particular, on differential operator realizations, symbolic computation packages, the Berezin bracket and virtual copies of the Lie algebras." @default.
- W4384661593 created "2023-07-20" @default.
- W4384661593 creator A5001695135 @default.
- W4384661593 creator A5049413367 @default.
- W4384661593 date "2023-08-04" @default.
- W4384661593 modified "2023-10-01" @default.
- W4384661593 title "The Lie algebra of the lowest transitively differential group of degree three" @default.
- W4384661593 cites W1623665855 @default.
- W4384661593 cites W1966724990 @default.
- W4384661593 cites W1978215808 @default.
- W4384661593 cites W2000893655 @default.
- W4384661593 cites W2005736699 @default.
- W4384661593 cites W2009517039 @default.
- W4384661593 cites W2011520493 @default.
- W4384661593 cites W2024268305 @default.
- W4384661593 cites W2030587040 @default.
- W4384661593 cites W2034008986 @default.
- W4384661593 cites W2061028827 @default.
- W4384661593 cites W2065021943 @default.
- W4384661593 cites W2071599752 @default.
- W4384661593 cites W2076296602 @default.
- W4384661593 cites W2081570691 @default.
- W4384661593 cites W2082122398 @default.
- W4384661593 cites W2087037392 @default.
- W4384661593 cites W2093146705 @default.
- W4384661593 cites W2094024074 @default.
- W4384661593 cites W2140096553 @default.
- W4384661593 cites W2142263206 @default.
- W4384661593 cites W2148920318 @default.
- W4384661593 cites W2185372834 @default.
- W4384661593 cites W2768047778 @default.
- W4384661593 cites W2951426433 @default.
- W4384661593 cites W3096626174 @default.
- W4384661593 cites W3098493241 @default.
- W4384661593 cites W3099798701 @default.
- W4384661593 cites W3102865938 @default.
- W4384661593 cites W3104775930 @default.
- W4384661593 cites W3189540615 @default.
- W4384661593 cites W4206258380 @default.
- W4384661593 cites W4223906757 @default.
- W4384661593 cites W4255169721 @default.
- W4384661593 doi "https://doi.org/10.1088/1751-8121/ace866" @default.
- W4384661593 hasPublicationYear "2023" @default.
- W4384661593 type Work @default.
- W4384661593 citedByCount "0" @default.
- W4384661593 crossrefType "journal-article" @default.
- W4384661593 hasAuthorship W4384661593A5001695135 @default.
- W4384661593 hasAuthorship W4384661593A5049413367 @default.
- W4384661593 hasBestOaLocation W43846615931 @default.
- W4384661593 hasConcept C136119220 @default.
- W4384661593 hasConcept C187915474 @default.
- W4384661593 hasConcept C202444582 @default.
- W4384661593 hasConcept C33923547 @default.
- W4384661593 hasConcept C51568863 @default.
- W4384661593 hasConcept C70915906 @default.
- W4384661593 hasConceptScore W4384661593C136119220 @default.
- W4384661593 hasConceptScore W4384661593C187915474 @default.
- W4384661593 hasConceptScore W4384661593C202444582 @default.
- W4384661593 hasConceptScore W4384661593C33923547 @default.
- W4384661593 hasConceptScore W4384661593C51568863 @default.
- W4384661593 hasConceptScore W4384661593C70915906 @default.
- W4384661593 hasFunder F4320334704 @default.
- W4384661593 hasIssue "34" @default.
- W4384661593 hasLocation W43846615931 @default.
- W4384661593 hasLocation W43846615932 @default.
- W4384661593 hasOpenAccess W4384661593 @default.
- W4384661593 hasPrimaryLocation W43846615931 @default.
- W4384661593 hasRelatedWork W1984763827 @default.
- W4384661593 hasRelatedWork W1994474827 @default.
- W4384661593 hasRelatedWork W2022816520 @default.
- W4384661593 hasRelatedWork W2045447727 @default.
- W4384661593 hasRelatedWork W2063132333 @default.
- W4384661593 hasRelatedWork W2077688576 @default.
- W4384661593 hasRelatedWork W2080365200 @default.
- W4384661593 hasRelatedWork W2764189116 @default.
- W4384661593 hasRelatedWork W3099476163 @default.
- W4384661593 hasRelatedWork W4214671562 @default.
- W4384661593 hasVolume "56" @default.
- W4384661593 isParatext "false" @default.
- W4384661593 isRetracted "false" @default.
- W4384661593 workType "article" @default.