Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384662356> ?p ?o ?g. }
- W4384662356 endingPage "19" @default.
- W4384662356 startingPage "1" @default.
- W4384662356 abstract "In this study, Bayesian estimation is performed for a class of random coefficient self-exciting integer-valued threshold autoregressive processes with explanatory variables. A new model with a linear structure is obtained through model reconstruction, which makes Markov Chain Monte Carlo method easy to perform. By introducing the latent variables series, a complete data likelihood is obtained. Based on this likelihood, the full conditional distributions are easily obtained for all the parameters and latent variables. By maximizing the posterior probability function, the threshold parameter is accurately estimated. Finally, some numerical results of the estimates and a real data example of crime counts in Ballina, New South Wales, Australia are presented." @default.
- W4384662356 created "2023-07-20" @default.
- W4384662356 creator A5040147161 @default.
- W4384662356 creator A5059605240 @default.
- W4384662356 creator A5070855525 @default.
- W4384662356 creator A5074722097 @default.
- W4384662356 date "2023-07-17" @default.
- W4384662356 modified "2023-10-03" @default.
- W4384662356 title "On MCMC sampling in random coefficients self-exciting integer-valued threshold autoregressive processes" @default.
- W4384662356 cites W1992421792 @default.
- W4384662356 cites W2022059524 @default.
- W4384662356 cites W2032051534 @default.
- W4384662356 cites W2044045490 @default.
- W4384662356 cites W2047636878 @default.
- W4384662356 cites W2051234935 @default.
- W4384662356 cites W2057765075 @default.
- W4384662356 cites W2086290220 @default.
- W4384662356 cites W2093607633 @default.
- W4384662356 cites W2147545132 @default.
- W4384662356 cites W2153552426 @default.
- W4384662356 cites W2165098365 @default.
- W4384662356 cites W2167799090 @default.
- W4384662356 cites W2172241436 @default.
- W4384662356 cites W2235845075 @default.
- W4384662356 cites W2320528005 @default.
- W4384662356 cites W2325370670 @default.
- W4384662356 cites W2341516299 @default.
- W4384662356 cites W2478692615 @default.
- W4384662356 cites W2491810186 @default.
- W4384662356 cites W2560551712 @default.
- W4384662356 cites W2731278514 @default.
- W4384662356 cites W2739836199 @default.
- W4384662356 cites W2760941949 @default.
- W4384662356 cites W2901528879 @default.
- W4384662356 cites W2937219009 @default.
- W4384662356 cites W3042232470 @default.
- W4384662356 cites W3081987421 @default.
- W4384662356 cites W3092441336 @default.
- W4384662356 cites W3118293852 @default.
- W4384662356 cites W3128468908 @default.
- W4384662356 cites W3137656297 @default.
- W4384662356 cites W3185989127 @default.
- W4384662356 cites W4200144792 @default.
- W4384662356 cites W4205297433 @default.
- W4384662356 cites W4211084607 @default.
- W4384662356 cites W4226157037 @default.
- W4384662356 cites W4229366216 @default.
- W4384662356 cites W4240779956 @default.
- W4384662356 cites W4241983685 @default.
- W4384662356 cites W4254383647 @default.
- W4384662356 cites W4311834597 @default.
- W4384662356 cites W4315702847 @default.
- W4384662356 cites W4376612777 @default.
- W4384662356 doi "https://doi.org/10.1080/00949655.2023.2237159" @default.
- W4384662356 hasPublicationYear "2023" @default.
- W4384662356 type Work @default.
- W4384662356 citedByCount "0" @default.
- W4384662356 crossrefType "journal-article" @default.
- W4384662356 hasAuthorship W4384662356A5040147161 @default.
- W4384662356 hasAuthorship W4384662356A5059605240 @default.
- W4384662356 hasAuthorship W4384662356A5070855525 @default.
- W4384662356 hasAuthorship W4384662356A5074722097 @default.
- W4384662356 hasConcept C105795698 @default.
- W4384662356 hasConcept C107673813 @default.
- W4384662356 hasConcept C111350023 @default.
- W4384662356 hasConcept C11413529 @default.
- W4384662356 hasConcept C159877910 @default.
- W4384662356 hasConcept C167928553 @default.
- W4384662356 hasConcept C28826006 @default.
- W4384662356 hasConcept C33923547 @default.
- W4384662356 hasConcept C51167844 @default.
- W4384662356 hasConcept C89106044 @default.
- W4384662356 hasConceptScore W4384662356C105795698 @default.
- W4384662356 hasConceptScore W4384662356C107673813 @default.
- W4384662356 hasConceptScore W4384662356C111350023 @default.
- W4384662356 hasConceptScore W4384662356C11413529 @default.
- W4384662356 hasConceptScore W4384662356C159877910 @default.
- W4384662356 hasConceptScore W4384662356C167928553 @default.
- W4384662356 hasConceptScore W4384662356C28826006 @default.
- W4384662356 hasConceptScore W4384662356C33923547 @default.
- W4384662356 hasConceptScore W4384662356C51167844 @default.
- W4384662356 hasConceptScore W4384662356C89106044 @default.
- W4384662356 hasFunder F4320310121 @default.
- W4384662356 hasFunder F4320321001 @default.
- W4384662356 hasLocation W43846623561 @default.
- W4384662356 hasOpenAccess W4384662356 @default.
- W4384662356 hasPrimaryLocation W43846623561 @default.
- W4384662356 hasRelatedWork W1995921209 @default.
- W4384662356 hasRelatedWork W2019541458 @default.
- W4384662356 hasRelatedWork W2072538404 @default.
- W4384662356 hasRelatedWork W2114093875 @default.
- W4384662356 hasRelatedWork W2117957819 @default.
- W4384662356 hasRelatedWork W2604957187 @default.
- W4384662356 hasRelatedWork W2983649992 @default.
- W4384662356 hasRelatedWork W3195584549 @default.
- W4384662356 hasRelatedWork W345277569 @default.
- W4384662356 hasRelatedWork W4362717805 @default.
- W4384662356 isParatext "false" @default.