Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384662384> ?p ?o ?g. }
- W4384662384 endingPage "5435" @default.
- W4384662384 startingPage "5435" @default.
- W4384662384 abstract "The electrical grid is gradually transitioning towards being an interconnected area of the smart grid, where embedded devices operate in an autonomous manner without any human intervention. An important element for this transition is the energy demand prediction, since the needs for energy have substantially increased due to the introduction of new and heavy consumption sources, such as electric vehicles. Accurate energy demand prediction, especially for short-term durations (i.e., minutes to hours), allows grid operators to produce the substantial amount needed to satisfy the demand–response equilibrium and avoid peak electricity load conditions that may also lead to blackouts in densely populated areas. However, to achieve such an accuracy level, machine learning (ML) models require extensive training with historical measurements, which is usually resource intensive (e.g., in memory and processing power). Hence, deriving accurate predictions for short-term energy demands is challenging due to the absence of external factors such as environmental data from different regions and seasons and categorical values such as bank/bridging holidays in the ML model. Additionally, existing work focuses on ML model execution on Cloud platforms, which usually does not satisfy the real-time requirements of grid operators for short-term energy demand predictions. To address these challenges, this article presents a new method that considers environmental factors and categorical values to build an energy profile for each consumer in a multi-access edge computing (MEC) framework. The method is also based on the Temporal Fusion Transformer (TFT) ML model, which allows it to learn the temporal dependencies of the gathered historical measurements and predict energy demands with satisfying accuracy. The method is applied to a home energy management system testbed containing photovoltaic systems, smart meters, sensors and actuators for detecting environmental factors (i.e., temperature, humidity and radiation) as well as energy storage systems as an additional energy supply source. The MEC framework is deployed in data concentrator devices where the TFT ML model is executed with low resource requirements, ensuring additional security as the data do not leave the location where they are produced." @default.
- W4384662384 created "2023-07-20" @default.
- W4384662384 creator A5037965915 @default.
- W4384662384 creator A5076338496 @default.
- W4384662384 date "2023-07-17" @default.
- W4384662384 modified "2023-10-01" @default.
- W4384662384 title "Edge-Based Short-Term Energy Demand Prediction" @default.
- W4384662384 cites W1509444306 @default.
- W4384662384 cites W1542401826 @default.
- W4384662384 cites W2003316645 @default.
- W4384662384 cites W2007272376 @default.
- W4384662384 cites W2009651961 @default.
- W4384662384 cites W2055173761 @default.
- W4384662384 cites W2098611419 @default.
- W4384662384 cites W2102148524 @default.
- W4384662384 cites W2107835500 @default.
- W4384662384 cites W2145732764 @default.
- W4384662384 cites W2145777288 @default.
- W4384662384 cites W2146588145 @default.
- W4384662384 cites W2166151355 @default.
- W4384662384 cites W2172064003 @default.
- W4384662384 cites W2202089267 @default.
- W4384662384 cites W2297311015 @default.
- W4384662384 cites W2502599298 @default.
- W4384662384 cites W2591180046 @default.
- W4384662384 cites W2617557114 @default.
- W4384662384 cites W2944851425 @default.
- W4384662384 cites W2949468773 @default.
- W4384662384 cites W2963507686 @default.
- W4384662384 cites W3004236603 @default.
- W4384662384 cites W3095671294 @default.
- W4384662384 cites W3110870618 @default.
- W4384662384 cites W3171884590 @default.
- W4384662384 cites W3213348457 @default.
- W4384662384 cites W4308100962 @default.
- W4384662384 doi "https://doi.org/10.3390/en16145435" @default.
- W4384662384 hasPublicationYear "2023" @default.
- W4384662384 type Work @default.
- W4384662384 citedByCount "1" @default.
- W4384662384 countsByYear W43846623842023 @default.
- W4384662384 crossrefType "journal-article" @default.
- W4384662384 hasAuthorship W4384662384A5037965915 @default.
- W4384662384 hasAuthorship W4384662384A5076338496 @default.
- W4384662384 hasBestOaLocation W43846623841 @default.
- W4384662384 hasConcept C10558101 @default.
- W4384662384 hasConcept C111919701 @default.
- W4384662384 hasConcept C119599485 @default.
- W4384662384 hasConcept C120314980 @default.
- W4384662384 hasConcept C121332964 @default.
- W4384662384 hasConcept C127413603 @default.
- W4384662384 hasConcept C13736549 @default.
- W4384662384 hasConcept C147940328 @default.
- W4384662384 hasConcept C165801399 @default.
- W4384662384 hasConcept C187691185 @default.
- W4384662384 hasConcept C200601418 @default.
- W4384662384 hasConcept C206658404 @default.
- W4384662384 hasConcept C2524010 @default.
- W4384662384 hasConcept C2779438525 @default.
- W4384662384 hasConcept C33923547 @default.
- W4384662384 hasConcept C41008148 @default.
- W4384662384 hasConcept C61797465 @default.
- W4384662384 hasConcept C62520636 @default.
- W4384662384 hasConcept C66322947 @default.
- W4384662384 hasConcept C79403827 @default.
- W4384662384 hasConcept C79974875 @default.
- W4384662384 hasConceptScore W4384662384C10558101 @default.
- W4384662384 hasConceptScore W4384662384C111919701 @default.
- W4384662384 hasConceptScore W4384662384C119599485 @default.
- W4384662384 hasConceptScore W4384662384C120314980 @default.
- W4384662384 hasConceptScore W4384662384C121332964 @default.
- W4384662384 hasConceptScore W4384662384C127413603 @default.
- W4384662384 hasConceptScore W4384662384C13736549 @default.
- W4384662384 hasConceptScore W4384662384C147940328 @default.
- W4384662384 hasConceptScore W4384662384C165801399 @default.
- W4384662384 hasConceptScore W4384662384C187691185 @default.
- W4384662384 hasConceptScore W4384662384C200601418 @default.
- W4384662384 hasConceptScore W4384662384C206658404 @default.
- W4384662384 hasConceptScore W4384662384C2524010 @default.
- W4384662384 hasConceptScore W4384662384C2779438525 @default.
- W4384662384 hasConceptScore W4384662384C33923547 @default.
- W4384662384 hasConceptScore W4384662384C41008148 @default.
- W4384662384 hasConceptScore W4384662384C61797465 @default.
- W4384662384 hasConceptScore W4384662384C62520636 @default.
- W4384662384 hasConceptScore W4384662384C66322947 @default.
- W4384662384 hasConceptScore W4384662384C79403827 @default.
- W4384662384 hasConceptScore W4384662384C79974875 @default.
- W4384662384 hasIssue "14" @default.
- W4384662384 hasLocation W43846623841 @default.
- W4384662384 hasOpenAccess W4384662384 @default.
- W4384662384 hasPrimaryLocation W43846623841 @default.
- W4384662384 hasRelatedWork W1542090993 @default.
- W4384662384 hasRelatedWork W1973124801 @default.
- W4384662384 hasRelatedWork W1975602840 @default.
- W4384662384 hasRelatedWork W2044982174 @default.
- W4384662384 hasRelatedWork W2090742221 @default.
- W4384662384 hasRelatedWork W2145659001 @default.
- W4384662384 hasRelatedWork W2380963126 @default.
- W4384662384 hasRelatedWork W2542091226 @default.