Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384662904> ?p ?o ?g. }
- W4384662904 abstract "The assignment of an individual to the true population of origin using a low-panel of discriminant SNP markers is one of the most important applications of genomic data for practical use. The aim of this study was to evaluate the potential of different Artificial Neural Networks (ANNs) approaches consisting Deep Neural Networks (DNN), Garson and Olden methods for feature selection of informative SNP markers from high-throughput genotyping data, that would be able to trace the true breed of unknown samples. The total of 795 animals from 37 breeds, genotyped by using the Illumina SNP 50k Bead chip were used in the current study and principal component analysis (PCA), log-likelihood ratios (LLR) and Neighbor-Joining (NJ) were applied to assess the performance of different assignment methods. The results revealed that the DNN, Garson, and Olden methods are able to assign individuals to true populations with 4270, 4937, and 7999 SNP markers, respectively. The PCA was used to determine how the animals allocated to the groups using all genotyped markers available on 50k Bead chip and the subset of SNP markers identified with different methods. The results indicated that all SNP panels are able to assign individuals into their true breeds. The success percentage of genetic assignment for different methods assessed by different levels of LLR showed that the success rate of 70% in the analysis was obtained by three methods with the number of markers of 110, 208, and 178 tags for DNN, Garson, and Olden methods, respectively. Also the results showed that DNN performed better than other two approaches by achieving 93% accuracy at the most stringent threshold. Finally, the identified SNPs were successfully used in independent out-group breeds consisting 120 individuals from eight breeds and the results indicated that these markers are able to correctly allocate all unknown samples to true population of origin. Furthermore, the NJ tree of allele-sharing distances on the validation dataset showed that the DNN has a high potential for feature selection. In general, the results of this study indicated that the DNN technique represents an efficient strategy for selecting a reduced pool of highly discriminant markers for assigning individuals to the true population of origin." @default.
- W4384662904 created "2023-07-20" @default.
- W4384662904 creator A5003949716 @default.
- W4384662904 creator A5068658293 @default.
- W4384662904 creator A5075050110 @default.
- W4384662904 creator A5092492448 @default.
- W4384662904 date "2023-07-18" @default.
- W4384662904 modified "2023-09-25" @default.
- W4384662904 title "Detecting SNP markers discriminating horse breeds by deep learning" @default.
- W4384662904 cites W1498436455 @default.
- W4384662904 cites W1525430841 @default.
- W4384662904 cites W1592654124 @default.
- W4384662904 cites W1594730842 @default.
- W4384662904 cites W171674400 @default.
- W4384662904 cites W1886329524 @default.
- W4384662904 cites W195462802 @default.
- W4384662904 cites W1965984077 @default.
- W4384662904 cites W2003756933 @default.
- W4384662904 cites W2013153871 @default.
- W4384662904 cites W2023807226 @default.
- W4384662904 cites W2024027525 @default.
- W4384662904 cites W2025815853 @default.
- W4384662904 cites W2034400748 @default.
- W4384662904 cites W2047645588 @default.
- W4384662904 cites W2052106091 @default.
- W4384662904 cites W2059165575 @default.
- W4384662904 cites W2071986643 @default.
- W4384662904 cites W2072076632 @default.
- W4384662904 cites W2078801194 @default.
- W4384662904 cites W2083844448 @default.
- W4384662904 cites W2093779882 @default.
- W4384662904 cites W2106100979 @default.
- W4384662904 cites W2108101947 @default.
- W4384662904 cites W2109410933 @default.
- W4384662904 cites W2113541192 @default.
- W4384662904 cites W2118769566 @default.
- W4384662904 cites W2121996702 @default.
- W4384662904 cites W2137356002 @default.
- W4384662904 cites W2152741076 @default.
- W4384662904 cites W2152768753 @default.
- W4384662904 cites W2169053895 @default.
- W4384662904 cites W2169177719 @default.
- W4384662904 cites W2176699305 @default.
- W4384662904 cites W2277388844 @default.
- W4384662904 cites W2311607323 @default.
- W4384662904 cites W2739718326 @default.
- W4384662904 cites W2766352633 @default.
- W4384662904 cites W2811394785 @default.
- W4384662904 cites W2885307904 @default.
- W4384662904 cites W2906946803 @default.
- W4384662904 cites W2947505454 @default.
- W4384662904 cites W3173256495 @default.
- W4384662904 cites W774366283 @default.
- W4384662904 doi "https://doi.org/10.1038/s41598-023-38601-z" @default.
- W4384662904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37464049" @default.
- W4384662904 hasPublicationYear "2023" @default.
- W4384662904 type Work @default.
- W4384662904 citedByCount "0" @default.
- W4384662904 crossrefType "journal-article" @default.
- W4384662904 hasAuthorship W4384662904A5003949716 @default.
- W4384662904 hasAuthorship W4384662904A5068658293 @default.
- W4384662904 hasAuthorship W4384662904A5075050110 @default.
- W4384662904 hasAuthorship W4384662904A5092492448 @default.
- W4384662904 hasBestOaLocation W43846629041 @default.
- W4384662904 hasConcept C104317684 @default.
- W4384662904 hasConcept C135763542 @default.
- W4384662904 hasConcept C139275648 @default.
- W4384662904 hasConcept C153180895 @default.
- W4384662904 hasConcept C153209595 @default.
- W4384662904 hasConcept C154945302 @default.
- W4384662904 hasConcept C163691529 @default.
- W4384662904 hasConcept C27438332 @default.
- W4384662904 hasConcept C2908647359 @default.
- W4384662904 hasConcept C31467283 @default.
- W4384662904 hasConcept C41008148 @default.
- W4384662904 hasConcept C54355233 @default.
- W4384662904 hasConcept C69738355 @default.
- W4384662904 hasConcept C70721500 @default.
- W4384662904 hasConcept C71924100 @default.
- W4384662904 hasConcept C86803240 @default.
- W4384662904 hasConcept C99454951 @default.
- W4384662904 hasConceptScore W4384662904C104317684 @default.
- W4384662904 hasConceptScore W4384662904C135763542 @default.
- W4384662904 hasConceptScore W4384662904C139275648 @default.
- W4384662904 hasConceptScore W4384662904C153180895 @default.
- W4384662904 hasConceptScore W4384662904C153209595 @default.
- W4384662904 hasConceptScore W4384662904C154945302 @default.
- W4384662904 hasConceptScore W4384662904C163691529 @default.
- W4384662904 hasConceptScore W4384662904C27438332 @default.
- W4384662904 hasConceptScore W4384662904C2908647359 @default.
- W4384662904 hasConceptScore W4384662904C31467283 @default.
- W4384662904 hasConceptScore W4384662904C41008148 @default.
- W4384662904 hasConceptScore W4384662904C54355233 @default.
- W4384662904 hasConceptScore W4384662904C69738355 @default.
- W4384662904 hasConceptScore W4384662904C70721500 @default.
- W4384662904 hasConceptScore W4384662904C71924100 @default.
- W4384662904 hasConceptScore W4384662904C86803240 @default.
- W4384662904 hasConceptScore W4384662904C99454951 @default.
- W4384662904 hasIssue "1" @default.
- W4384662904 hasLocation W43846629041 @default.