Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384663114> ?p ?o ?g. }
- W4384663114 endingPage "4791" @default.
- W4384663114 startingPage "4772" @default.
- W4384663114 abstract "Abstract Neuroimaging‐based prediction methods for intelligence have seen a rapid development. Among different neuroimaging modalities, prediction using functional connectivity (FC) has shown great promise. Most literature has focused on prediction using static FC, with limited investigations on the merits of such analysis compared to prediction using dynamic FC or region‐level functional magnetic resonance imaging (fMRI) times series that encode temporal variability. To account for the temporal dynamics in fMRI, we propose a bi‐directional long short‐term memory (bi‐LSTM) approach that incorporates feature selection mechanism. The proposed pipeline is implemented via an efficient algorithm and applied for predicting intelligence using region‐level time series and dynamic FC. We compare the prediction performance using different fMRI features acquired from the Adolescent Brain Cognitive Development (ABCD) study involving nearly 7000 individuals. Our detailed analysis illustrates the consistently inferior performance of static FC compared to region‐level time series or dynamic FC for single and combined rest and task fMRI experiments. The joint analysis of task and rest fMRI leads to improved intelligence prediction under all models compared to using fMRI from only one experiment. In addition, the proposed bi‐LSTM pipeline based on region‐level time series identifies several shared and differential important brain regions across fMRI experiments that drive intelligence prediction. A test–retest analysis of the selected regions shows strong reliability across cross‐validation folds. Given the large sample size of ABCD study, our results provide strong evidence that superior prediction of intelligence can be achieved by accounting for temporal variations in fMRI." @default.
- W4384663114 created "2023-07-20" @default.
- W4384663114 creator A5036338045 @default.
- W4384663114 creator A5036554015 @default.
- W4384663114 creator A5063256899 @default.
- W4384663114 creator A5079063339 @default.
- W4384663114 creator A5083350924 @default.
- W4384663114 date "2023-07-19" @default.
- W4384663114 modified "2023-09-25" @default.
- W4384663114 title "Accounting for temporal variability in functional magnetic resonance imaging improves prediction of intelligence" @default.
- W4384663114 cites W1580731962 @default.
- W4384663114 cites W1967745216 @default.
- W4384663114 cites W1983208069 @default.
- W4384663114 cites W1999653836 @default.
- W4384663114 cites W2007894316 @default.
- W4384663114 cites W2064675550 @default.
- W4384663114 cites W2101135654 @default.
- W4384663114 cites W2107499714 @default.
- W4384663114 cites W2111613011 @default.
- W4384663114 cites W2114046308 @default.
- W4384663114 cites W2120259577 @default.
- W4384663114 cites W2122825543 @default.
- W4384663114 cites W2126721793 @default.
- W4384663114 cites W2131774270 @default.
- W4384663114 cites W2135046866 @default.
- W4384663114 cites W2137725373 @default.
- W4384663114 cites W2150355110 @default.
- W4384663114 cites W2157835994 @default.
- W4384663114 cites W2162010696 @default.
- W4384663114 cites W2165985389 @default.
- W4384663114 cites W2168983113 @default.
- W4384663114 cites W2171658023 @default.
- W4384663114 cites W2327037637 @default.
- W4384663114 cites W2376715061 @default.
- W4384663114 cites W2516844838 @default.
- W4384663114 cites W2526511911 @default.
- W4384663114 cites W2533800772 @default.
- W4384663114 cites W2562454835 @default.
- W4384663114 cites W2605370253 @default.
- W4384663114 cites W2735868380 @default.
- W4384663114 cites W2766909621 @default.
- W4384663114 cites W2768801566 @default.
- W4384663114 cites W2776974404 @default.
- W4384663114 cites W2790008983 @default.
- W4384663114 cites W2791781046 @default.
- W4384663114 cites W2792515696 @default.
- W4384663114 cites W2884516837 @default.
- W4384663114 cites W2951048277 @default.
- W4384663114 cites W2953062348 @default.
- W4384663114 cites W2953136735 @default.
- W4384663114 cites W2953739743 @default.
- W4384663114 cites W2954710854 @default.
- W4384663114 cites W2963521228 @default.
- W4384663114 cites W2966327252 @default.
- W4384663114 cites W2971837286 @default.
- W4384663114 cites W2979650665 @default.
- W4384663114 cites W2991634959 @default.
- W4384663114 cites W3008556306 @default.
- W4384663114 cites W3012616980 @default.
- W4384663114 cites W3032707732 @default.
- W4384663114 cites W3035624610 @default.
- W4384663114 cites W3044127717 @default.
- W4384663114 cites W3059738892 @default.
- W4384663114 cites W3121045849 @default.
- W4384663114 cites W3121192739 @default.
- W4384663114 cites W3125436477 @default.
- W4384663114 cites W3126407261 @default.
- W4384663114 cites W3126842075 @default.
- W4384663114 cites W3128446111 @default.
- W4384663114 cites W3135913967 @default.
- W4384663114 cites W3147329854 @default.
- W4384663114 cites W3162117240 @default.
- W4384663114 cites W3191879784 @default.
- W4384663114 cites W3204455432 @default.
- W4384663114 cites W3205544231 @default.
- W4384663114 cites W4220718392 @default.
- W4384663114 cites W4220838968 @default.
- W4384663114 cites W4224947618 @default.
- W4384663114 cites W4234698323 @default.
- W4384663114 cites W4280606479 @default.
- W4384663114 cites W4384663114 @default.
- W4384663114 doi "https://doi.org/10.1002/hbm.26415" @default.
- W4384663114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37466292" @default.
- W4384663114 hasPublicationYear "2023" @default.
- W4384663114 type Work @default.
- W4384663114 citedByCount "1" @default.
- W4384663114 countsByYear W43846631142023 @default.
- W4384663114 crossrefType "journal-article" @default.
- W4384663114 hasAuthorship W4384663114A5036338045 @default.
- W4384663114 hasAuthorship W4384663114A5036554015 @default.
- W4384663114 hasAuthorship W4384663114A5063256899 @default.
- W4384663114 hasAuthorship W4384663114A5079063339 @default.
- W4384663114 hasAuthorship W4384663114A5083350924 @default.
- W4384663114 hasBestOaLocation W43846631141 @default.
- W4384663114 hasConcept C119857082 @default.
- W4384663114 hasConcept C153180895 @default.
- W4384663114 hasConcept C154945302 @default.
- W4384663114 hasConcept C15744967 @default.