Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384663525> ?p ?o ?g. }
- W4384663525 endingPage "1693" @default.
- W4384663525 startingPage "1677" @default.
- W4384663525 abstract "We propose a model-free shrinking-dimer saddle dynamics for finding any-index saddle points and constructing the solution landscapes, in which the force in the standard saddle dynamics is replaced by a surrogate model trained by the Gassian process learning. By this means, the exact form of the model is no longer necessary such that the saddle dynamics could be implemented based only on some observations of the force. This data-driven approach not only avoids the modeling procedure that could be difficult or inaccurate, but also significantly reduces the number of queries of the force that may be expensive or time-consuming. We accordingly develop a sequential learning saddle dynamics algorithm to perform a sequence of local saddle dynamics, in which the queries of the training samples and the update or retraining of the surrogate force are performed online and around the latent trajectory in order to improve the accuracy of the surrogate model and the value of each sampling. Numerical experiments are performed to demonstrate the effectiveness and efficiency of the proposed algorithm." @default.
- W4384663525 created "2023-07-20" @default.
- W4384663525 creator A5004001300 @default.
- W4384663525 creator A5050912559 @default.
- W4384663525 creator A5067618884 @default.
- W4384663525 date "2023-07-18" @default.
- W4384663525 modified "2023-10-18" @default.
- W4384663525 title "A model-free shrinking-dimer saddle dynamics for finding saddle point and solution landscape" @default.
- W4384663525 cites W1497401739 @default.
- W4384663525 cites W1967676806 @default.
- W4384663525 cites W1967692477 @default.
- W4384663525 cites W1990634119 @default.
- W4384663525 cites W1995102330 @default.
- W4384663525 cites W1996655763 @default.
- W4384663525 cites W1997168267 @default.
- W4384663525 cites W1999513324 @default.
- W4384663525 cites W2003301106 @default.
- W4384663525 cites W2004751437 @default.
- W4384663525 cites W2006947798 @default.
- W4384663525 cites W2017721379 @default.
- W4384663525 cites W2024540804 @default.
- W4384663525 cites W2025469203 @default.
- W4384663525 cites W2045845830 @default.
- W4384663525 cites W2071346904 @default.
- W4384663525 cites W2078123111 @default.
- W4384663525 cites W2091248801 @default.
- W4384663525 cites W2143281686 @default.
- W4384663525 cites W2282959781 @default.
- W4384663525 cites W2309846817 @default.
- W4384663525 cites W2313368352 @default.
- W4384663525 cites W2568511342 @default.
- W4384663525 cites W2573864470 @default.
- W4384663525 cites W2739903698 @default.
- W4384663525 cites W2781973163 @default.
- W4384663525 cites W2898206326 @default.
- W4384663525 cites W2916171465 @default.
- W4384663525 cites W2963196588 @default.
- W4384663525 cites W2982546823 @default.
- W4384663525 cites W2983275660 @default.
- W4384663525 cites W3001357509 @default.
- W4384663525 cites W3005347120 @default.
- W4384663525 cites W3008343542 @default.
- W4384663525 cites W3082716427 @default.
- W4384663525 cites W3103364005 @default.
- W4384663525 cites W3112130641 @default.
- W4384663525 cites W3136161443 @default.
- W4384663525 cites W3195520978 @default.
- W4384663525 cites W4211049957 @default.
- W4384663525 cites W4297998095 @default.
- W4384663525 cites W4304974949 @default.
- W4384663525 cites W4306406294 @default.
- W4384663525 cites W4308532668 @default.
- W4384663525 cites W4313800160 @default.
- W4384663525 cites W4377193784 @default.
- W4384663525 doi "https://doi.org/10.1007/s13160-023-00604-8" @default.
- W4384663525 hasPublicationYear "2023" @default.
- W4384663525 type Work @default.
- W4384663525 citedByCount "0" @default.
- W4384663525 crossrefType "journal-article" @default.
- W4384663525 hasAuthorship W4384663525A5004001300 @default.
- W4384663525 hasAuthorship W4384663525A5050912559 @default.
- W4384663525 hasAuthorship W4384663525A5067618884 @default.
- W4384663525 hasBestOaLocation W43846635252 @default.
- W4384663525 hasConcept C119857082 @default.
- W4384663525 hasConcept C121332964 @default.
- W4384663525 hasConcept C126255220 @default.
- W4384663525 hasConcept C1276947 @default.
- W4384663525 hasConcept C131675550 @default.
- W4384663525 hasConcept C13662910 @default.
- W4384663525 hasConcept C162324750 @default.
- W4384663525 hasConcept C2524010 @default.
- W4384663525 hasConcept C2681867 @default.
- W4384663525 hasConcept C2777127463 @default.
- W4384663525 hasConcept C2777303404 @default.
- W4384663525 hasConcept C2778112365 @default.
- W4384663525 hasConcept C28826006 @default.
- W4384663525 hasConcept C33923547 @default.
- W4384663525 hasConcept C41008148 @default.
- W4384663525 hasConcept C50522688 @default.
- W4384663525 hasConcept C54355233 @default.
- W4384663525 hasConcept C86803240 @default.
- W4384663525 hasConceptScore W4384663525C119857082 @default.
- W4384663525 hasConceptScore W4384663525C121332964 @default.
- W4384663525 hasConceptScore W4384663525C126255220 @default.
- W4384663525 hasConceptScore W4384663525C1276947 @default.
- W4384663525 hasConceptScore W4384663525C131675550 @default.
- W4384663525 hasConceptScore W4384663525C13662910 @default.
- W4384663525 hasConceptScore W4384663525C162324750 @default.
- W4384663525 hasConceptScore W4384663525C2524010 @default.
- W4384663525 hasConceptScore W4384663525C2681867 @default.
- W4384663525 hasConceptScore W4384663525C2777127463 @default.
- W4384663525 hasConceptScore W4384663525C2777303404 @default.
- W4384663525 hasConceptScore W4384663525C2778112365 @default.
- W4384663525 hasConceptScore W4384663525C28826006 @default.
- W4384663525 hasConceptScore W4384663525C33923547 @default.
- W4384663525 hasConceptScore W4384663525C41008148 @default.
- W4384663525 hasConceptScore W4384663525C50522688 @default.
- W4384663525 hasConceptScore W4384663525C54355233 @default.