Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384664262> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4384664262 endingPage "1114" @default.
- W4384664262 startingPage "1111" @default.
- W4384664262 abstract "Future Medicinal ChemistryAhead of Print EditorialFluorinated nucleosides, nucleotides and sugar nucleotidesJonathan P Dolan‡, Caecilie MM Benckendorff‡, Robert A Field & Gavin J MillerJonathan P Dolan‡ https://orcid.org/0000-0002-7009-2225School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK‡Authors contributed equallySearch for more papers by this author, Caecilie MM Benckendorff‡School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK‡Authors contributed equallySearch for more papers by this author, Robert A Field https://orcid.org/0000-0001-8574-0275Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, M1 7DN, UKSearch for more papers by this author & Gavin J Miller *Author for correspondence: E-mail Address: g.j.miller@keele.ac.ukhttps://orcid.org/0000-0001-6533-3306School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UKSearch for more papers by this authorPublished Online:19 Jul 2023https://doi.org/10.4155/fmc-2023-0159AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleReferences1. Purser S, Moore PR, Swallow S, Gouverneur V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37(2), 320–330 (2008).Crossref, Medline, CAS, Google Scholar2. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58(21), 8315–8359 (2015).Crossref, Medline, CAS, Google Scholar3. Cavaliere A, Probst KC, Westwell AD, Slusarczyk M. Fluorinated nucleosides as an important class of anticancer and antiviral agents. Future Med. Chem. 9(15), 1809–1833 (2017).Link, CAS, Google Scholar4. Mehellou Y, Balzarini J, McGuigan C. Aryloxy phosphoramidate triesters: a technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem 4(11), 1779–1791 (2009).Crossref, Medline, CAS, Google Scholar5. Ross BS, Ganapati Reddy P, Zhang H-R, Rachakonda S, Sofia MJ. Synthesis of diastereomerically pure nucleotide phosphoramidates. J. Org. Chem. 76(20), 8311–8319 (2011).Crossref, Medline, CAS, Google Scholar6. Yoon J, Kim G, Jarhad DB et al. Design, synthesis, and anti-RNA virus activity of 6′-fluorinated-aristeromycin analogues. J. Med. Chem. 62(13), 6346–6362 (2019).Crossref, Medline, CAS, Google Scholar7. Benckendorff C, Hawes C, Smith M, Miller G. Chemical diversification of carbocyclic fluorinated pyrimidine nucleosides: introducing 2′-arabino analogues and ring unsaturation. Synlett doi: 10.1055/a-2079-9310 (.2023) (Epub ahead of print).Google Scholar8. Benckendorff CMM, Slyusarchuk VD, Huang N, Lima MA, Smith M, Miller GJ. Synthesis of fluorinated carbocyclic pyrimidine nucleoside analogues. Org. Biomol. Chem. 20(47), 9469–9489 (2022).Crossref, Medline, CAS, Google Scholar9. Linclau B, Ardá A, Reichardt N-C et al. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem. Soc. Rev. 49(12), 3863–3888 (2020).Crossref, Medline, CAS, Google Scholar10. Huonnic K, Linclau B. The synthesis and glycoside formation of polyfluorinated carbohydrates. Chem. Rev. 122(20), 15503–15602 (2022).Crossref, Medline, CAS, Google Scholar11. Beswick L, Dimitriou E, Ahmadipour S et al. Inhibition of the GDP-D-mannose dehydrogenase from Pseudomonas aeruginosa using targeted sugar nucleotide probes. ACS Chem. Biol. 15(12), 3086–3092 (2020).Crossref, Medline, CAS, Google Scholar12. Andrade P, Muñoz-García JC, Pergolizzi G et al. Chemoenzymatic synthesis of fluorinated cellodextrins identifies a new allomorph for cellulose-like materials. Chem. Eur. J. 27(4), 1374–1382 (2021).Crossref, Medline, Google Scholar13. Council CE, Kilpin KJ, Gusthart JS, Allman SA, Linclau B, Lee SS. Enzymatic glycosylation involving fluorinated carbohydrates. Org. Biomol. Chem. 18(18), 3423–3451 (2020).Crossref, Medline, CAS, Google Scholar14. Errey JC, Mann MC, Fairhurst SA et al. Sugar nucleotide recognition by Klebsiella pneumoniae UDP-D-galactopyranose mutase: fluorinated substrates, kinetics and equilibria. Org. Biomol. Chem. 7(5), 1009 (2009).Crossref, Medline, CAS, Google Scholar15. van Straaten KE, Kuttiyatveetil JRA, Sevrain CM et al. Structural basis of ligand binding to UDP-galactopyranose mutase from Mycobacterium tuberculosis using substrate and tetrafluorinated substrate analogues. J. Am. Chem. Soc. 137(3), 1230–1244 (2015).Crossref, Medline, CAS, Google Scholar16. Geissner A, Baumann L, Morley TJ et al. 7-Fluorosialyl glycosides are hydrolysis resistant but readily assembled by sialyltransferases providing easy access to more metabolically stable glycoproteins. ACS Cent. Sci. 7(2), 345–354 (2021).Crossref, Medline, CAS, Google Scholar17. Tantanarat K, Rejzek M, O'Neill E et al. An expedient enzymatic route to isomeric 2-, 3- and 6-monodeoxy-monofluoro-maltose derivatives. Carbohydr. Res. 358, 12–18 (2012).Crossref, Medline, CAS, Google Scholar18. Ko H, Fricks I, Ivanov AA, Harden TK, Jacobson KA. Structure–activity relationship of uridine 5′-diphosphoglucose analogues as agonists of the human P2Y14 receptor. J. Med. Chem. 50(9), 2030–2039 (2007).Crossref, Medline, CAS, Google Scholar19. Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic approaches to building blocks for enzymatic and chemical glycan synthesis. JACS Au. 3(1), 47–61 (2023).Crossref, Medline, CAS, Google Scholar20. Kempa EE, Galman JL, Parmeggiani F et al. Rapid screening of diverse biotransformations for enzyme evolution. JACS Au. 1(4), 508–516 (2021).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 8 times History Received 30 May 2023 Accepted 26 June 2023 Published online 19 July 2023 Information© 2023 Newlands PressFinancial & competing interests disclosureThis work was supported by the UK Research and Innovation Medical Research Council (grant no. MR/T019522/1). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download" @default.
- W4384664262 created "2023-07-20" @default.
- W4384664262 creator A5014859634 @default.
- W4384664262 creator A5022196203 @default.
- W4384664262 creator A5038061412 @default.
- W4384664262 creator A5051354705 @default.
- W4384664262 date "2023-07-01" @default.
- W4384664262 modified "2023-10-13" @default.
- W4384664262 title "Fluorinated nucleosides, nucleotides and sugar nucleotides" @default.
- W4384664262 cites W2011802569 @default.
- W4384664262 cites W2017492018 @default.
- W4384664262 cites W2044745250 @default.
- W4384664262 cites W2107667230 @default.
- W4384664262 cites W2111383131 @default.
- W4384664262 cites W2116087305 @default.
- W4384664262 cites W2264719596 @default.
- W4384664262 cites W2335084542 @default.
- W4384664262 cites W2745573854 @default.
- W4384664262 cites W2951310291 @default.
- W4384664262 cites W3016857078 @default.
- W4384664262 cites W3033221539 @default.
- W4384664262 cites W3091097863 @default.
- W4384664262 cites W3107122430 @default.
- W4384664262 cites W3108701030 @default.
- W4384664262 cites W3124815318 @default.
- W4384664262 cites W4281491532 @default.
- W4384664262 cites W4309509351 @default.
- W4384664262 cites W4311717877 @default.
- W4384664262 doi "https://doi.org/10.4155/fmc-2023-0159" @default.
- W4384664262 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37466090" @default.
- W4384664262 hasPublicationYear "2023" @default.
- W4384664262 type Work @default.
- W4384664262 citedByCount "0" @default.
- W4384664262 crossrefType "journal-article" @default.
- W4384664262 hasAuthorship W4384664262A5014859634 @default.
- W4384664262 hasAuthorship W4384664262A5022196203 @default.
- W4384664262 hasAuthorship W4384664262A5038061412 @default.
- W4384664262 hasAuthorship W4384664262A5051354705 @default.
- W4384664262 hasConcept C161191863 @default.
- W4384664262 hasConcept C185592680 @default.
- W4384664262 hasConcept C18903297 @default.
- W4384664262 hasConcept C2777496998 @default.
- W4384664262 hasConcept C41008148 @default.
- W4384664262 hasConcept C86803240 @default.
- W4384664262 hasConceptScore W4384664262C161191863 @default.
- W4384664262 hasConceptScore W4384664262C185592680 @default.
- W4384664262 hasConceptScore W4384664262C18903297 @default.
- W4384664262 hasConceptScore W4384664262C2777496998 @default.
- W4384664262 hasConceptScore W4384664262C41008148 @default.
- W4384664262 hasConceptScore W4384664262C86803240 @default.
- W4384664262 hasFunder F4320334626 @default.
- W4384664262 hasIssue "13" @default.
- W4384664262 hasLocation W43846642621 @default.
- W4384664262 hasLocation W43846642622 @default.
- W4384664262 hasOpenAccess W4384664262 @default.
- W4384664262 hasPrimaryLocation W43846642621 @default.
- W4384664262 hasRelatedWork W1531601525 @default.
- W4384664262 hasRelatedWork W2319480705 @default.
- W4384664262 hasRelatedWork W2384464875 @default.
- W4384664262 hasRelatedWork W2606230654 @default.
- W4384664262 hasRelatedWork W2607424097 @default.
- W4384664262 hasRelatedWork W2748952813 @default.
- W4384664262 hasRelatedWork W2899084033 @default.
- W4384664262 hasRelatedWork W2948807893 @default.
- W4384664262 hasRelatedWork W4387497383 @default.
- W4384664262 hasRelatedWork W2778153218 @default.
- W4384664262 hasVolume "15" @default.
- W4384664262 isParatext "false" @default.
- W4384664262 isRetracted "false" @default.
- W4384664262 workType "article" @default.