Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384664572> ?p ?o ?g. }
- W4384664572 endingPage "794" @default.
- W4384664572 startingPage "783" @default.
- W4384664572 abstract "In external radiotherapy of head and neck (HN) cancers, the reduction of irradiation accuracy due to HN volume reduction often causes a problem. Adaptive radiotherapy (ART) can effectively solve this problem; however, its application to all cases is impractical because of cost and time. Therefore, finding priority cases is essential. This study aimed to predict patients with HN cancers are more likely to need ART based on a quantitative measure of large HN volume reduction and evaluate model accuracy. The study included 172 cases of patients with HN cancer who received external irradiation. The HN volume was calculated using cone-beam computed tomography (CT) for irradiation-guided radiotherapy for all treatment fractions and classified into two groups: cases with a large reduction in the HN volume and cases without a large reduction. Radiomic features were extracted from the primary gross tumor volume (GTV) and nodal GTV of the planning CT. To develop the prediction model, four feature selection methods and two machine-learning algorithms were tested. Predictive performance was evaluated by the area under the curve (AUC), accuracy, sensitivity and specificity. Predictive performance was the highest for the random forest, with an AUC of 0.662. Furthermore, its accuracy, sensitivity and specificity were 0.692, 0.700 and 0.813, respectively. Selected features included radiomic features of the primary GTV, human papillomavirus in oropharyngeal cancer and the implementation of chemotherapy; thus, these features might be related to HN volume change. Our model suggested the potential to predict ART requirements based on HN volume reduction ." @default.
- W4384664572 created "2023-07-20" @default.
- W4384664572 creator A5004640817 @default.
- W4384664572 creator A5030060347 @default.
- W4384664572 creator A5037508118 @default.
- W4384664572 creator A5039379517 @default.
- W4384664572 creator A5055554576 @default.
- W4384664572 creator A5061504042 @default.
- W4384664572 creator A5071741462 @default.
- W4384664572 creator A5091643028 @default.
- W4384664572 date "2023-07-18" @default.
- W4384664572 modified "2023-10-14" @default.
- W4384664572 title "Development of a prediction model for head and neck volume reduction by clinical factors, dose–volume histogram parameters and radiomics in head and neck cancer" @default.
- W4384664572 cites W1982191980 @default.
- W4384664572 cites W1986202788 @default.
- W4384664572 cites W1995788949 @default.
- W4384664572 cites W2010106162 @default.
- W4384664572 cites W2016535078 @default.
- W4384664572 cites W2018844481 @default.
- W4384664572 cites W2037668591 @default.
- W4384664572 cites W2044110153 @default.
- W4384664572 cites W2052507258 @default.
- W4384664572 cites W2083927153 @default.
- W4384664572 cites W2102981463 @default.
- W4384664572 cites W2140110477 @default.
- W4384664572 cites W2141849556 @default.
- W4384664572 cites W2142504798 @default.
- W4384664572 cites W2172252999 @default.
- W4384664572 cites W2267325983 @default.
- W4384664572 cites W2471913217 @default.
- W4384664572 cites W2613685210 @default.
- W4384664572 cites W2760242838 @default.
- W4384664572 cites W2766872246 @default.
- W4384664572 cites W2767123956 @default.
- W4384664572 cites W2767128594 @default.
- W4384664572 cites W2791315675 @default.
- W4384664572 cites W2883453212 @default.
- W4384664572 cites W2883764227 @default.
- W4384664572 cites W2902954063 @default.
- W4384664572 cites W2951203633 @default.
- W4384664572 cites W2963308874 @default.
- W4384664572 cites W2981001892 @default.
- W4384664572 cites W2998851574 @default.
- W4384664572 cites W3008442392 @default.
- W4384664572 cites W3020996329 @default.
- W4384664572 cites W3042538418 @default.
- W4384664572 cites W3100610036 @default.
- W4384664572 cites W3206166490 @default.
- W4384664572 cites W3216244104 @default.
- W4384664572 cites W4281663706 @default.
- W4384664572 doi "https://doi.org/10.1093/jrr/rrad052" @default.
- W4384664572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37466450" @default.
- W4384664572 hasPublicationYear "2023" @default.
- W4384664572 type Work @default.
- W4384664572 citedByCount "0" @default.
- W4384664572 crossrefType "journal-article" @default.
- W4384664572 hasAuthorship W4384664572A5004640817 @default.
- W4384664572 hasAuthorship W4384664572A5030060347 @default.
- W4384664572 hasAuthorship W4384664572A5037508118 @default.
- W4384664572 hasAuthorship W4384664572A5039379517 @default.
- W4384664572 hasAuthorship W4384664572A5055554576 @default.
- W4384664572 hasAuthorship W4384664572A5061504042 @default.
- W4384664572 hasAuthorship W4384664572A5071741462 @default.
- W4384664572 hasAuthorship W4384664572A5091643028 @default.
- W4384664572 hasBestOaLocation W43846645721 @default.
- W4384664572 hasConcept C111335779 @default.
- W4384664572 hasConcept C121332964 @default.
- W4384664572 hasConcept C126838900 @default.
- W4384664572 hasConcept C201645570 @default.
- W4384664572 hasConcept C20556612 @default.
- W4384664572 hasConcept C2524010 @default.
- W4384664572 hasConcept C2776530083 @default.
- W4384664572 hasConcept C2778559731 @default.
- W4384664572 hasConcept C2989005 @default.
- W4384664572 hasConcept C33923547 @default.
- W4384664572 hasConcept C509974204 @default.
- W4384664572 hasConcept C62520636 @default.
- W4384664572 hasConcept C71924100 @default.
- W4384664572 hasConceptScore W4384664572C111335779 @default.
- W4384664572 hasConceptScore W4384664572C121332964 @default.
- W4384664572 hasConceptScore W4384664572C126838900 @default.
- W4384664572 hasConceptScore W4384664572C201645570 @default.
- W4384664572 hasConceptScore W4384664572C20556612 @default.
- W4384664572 hasConceptScore W4384664572C2524010 @default.
- W4384664572 hasConceptScore W4384664572C2776530083 @default.
- W4384664572 hasConceptScore W4384664572C2778559731 @default.
- W4384664572 hasConceptScore W4384664572C2989005 @default.
- W4384664572 hasConceptScore W4384664572C33923547 @default.
- W4384664572 hasConceptScore W4384664572C509974204 @default.
- W4384664572 hasConceptScore W4384664572C62520636 @default.
- W4384664572 hasConceptScore W4384664572C71924100 @default.
- W4384664572 hasFunder F4320334764 @default.
- W4384664572 hasIssue "5" @default.
- W4384664572 hasLocation W43846645721 @default.
- W4384664572 hasLocation W43846645722 @default.
- W4384664572 hasOpenAccess W4384664572 @default.
- W4384664572 hasPrimaryLocation W43846645721 @default.
- W4384664572 hasRelatedWork W1974239774 @default.