Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384665356> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4384665356 endingPage "9" @default.
- W4384665356 startingPage "1" @default.
- W4384665356 abstract "This article studies the optimal synchronization of linear heterogeneous multiagent systems (MASs) with partial unknown knowledge of the system dynamics. The object is to realize system synchronization as well as minimize the performance index of each agent. A framework of heterogeneous multiagent graphical games is formulated first. In the graphical games, it is proved that the optimal control policy relying on the solution of the Hamilton-Jacobian-Bellmen (HJB) equation is not only in Nash equilibrium, but also the best response to fixed control policies of its neighbors. To solve the optimal control policy and the minimum value of the performance index, a model-based policy iteration (PI) algorithm is proposed. Then, according to the model-based algorithm, a data-based off-policy integral reinforcement learning (IRL) algorithm is put forward to handle the partially unknown system dynamics. Furthermore, a single-critic neural network (NN) structure is used to implement the data-based algorithm. Based on the data collected by the behavior policy of the data-based off-policy algorithm, the gradient descent method is used to train NNs to approach the ideal weights. In addition, it is proved that all the proposed algorithms are convergent, and the weight-tuning law of the single-critic NNs can promote optimal synchronization. Finally, a numerical example is proposed to show the effectiveness of the theoretical analysis." @default.
- W4384665356 created "2023-07-20" @default.
- W4384665356 creator A5016137188 @default.
- W4384665356 creator A5059432254 @default.
- W4384665356 creator A5061772046 @default.
- W4384665356 creator A5068371897 @default.
- W4384665356 date "2023-01-01" @default.
- W4384665356 modified "2023-10-14" @default.
- W4384665356 title "Data-Based Optimal Synchronization of Heterogeneous Multiagent Systems in Graphical Games via Reinforcement Learning" @default.
- W4384665356 doi "https://doi.org/10.1109/tnnls.2023.3291542" @default.
- W4384665356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37463077" @default.
- W4384665356 hasPublicationYear "2023" @default.
- W4384665356 type Work @default.
- W4384665356 citedByCount "0" @default.
- W4384665356 crossrefType "journal-article" @default.
- W4384665356 hasAuthorship W4384665356A5016137188 @default.
- W4384665356 hasAuthorship W4384665356A5059432254 @default.
- W4384665356 hasAuthorship W4384665356A5061772046 @default.
- W4384665356 hasAuthorship W4384665356A5068371897 @default.
- W4384665356 hasConcept C126255220 @default.
- W4384665356 hasConcept C127162648 @default.
- W4384665356 hasConcept C14646407 @default.
- W4384665356 hasConcept C153258448 @default.
- W4384665356 hasConcept C154945302 @default.
- W4384665356 hasConcept C196978813 @default.
- W4384665356 hasConcept C200331156 @default.
- W4384665356 hasConcept C2778562939 @default.
- W4384665356 hasConcept C28826006 @default.
- W4384665356 hasConcept C31258907 @default.
- W4384665356 hasConcept C33923547 @default.
- W4384665356 hasConcept C41008148 @default.
- W4384665356 hasConcept C41550386 @default.
- W4384665356 hasConcept C46814582 @default.
- W4384665356 hasConcept C50644808 @default.
- W4384665356 hasConcept C91575142 @default.
- W4384665356 hasConcept C97541855 @default.
- W4384665356 hasConceptScore W4384665356C126255220 @default.
- W4384665356 hasConceptScore W4384665356C127162648 @default.
- W4384665356 hasConceptScore W4384665356C14646407 @default.
- W4384665356 hasConceptScore W4384665356C153258448 @default.
- W4384665356 hasConceptScore W4384665356C154945302 @default.
- W4384665356 hasConceptScore W4384665356C196978813 @default.
- W4384665356 hasConceptScore W4384665356C200331156 @default.
- W4384665356 hasConceptScore W4384665356C2778562939 @default.
- W4384665356 hasConceptScore W4384665356C28826006 @default.
- W4384665356 hasConceptScore W4384665356C31258907 @default.
- W4384665356 hasConceptScore W4384665356C33923547 @default.
- W4384665356 hasConceptScore W4384665356C41008148 @default.
- W4384665356 hasConceptScore W4384665356C41550386 @default.
- W4384665356 hasConceptScore W4384665356C46814582 @default.
- W4384665356 hasConceptScore W4384665356C50644808 @default.
- W4384665356 hasConceptScore W4384665356C91575142 @default.
- W4384665356 hasConceptScore W4384665356C97541855 @default.
- W4384665356 hasFunder F4320321001 @default.
- W4384665356 hasLocation W43846653561 @default.
- W4384665356 hasLocation W43846653562 @default.
- W4384665356 hasOpenAccess W4384665356 @default.
- W4384665356 hasPrimaryLocation W43846653561 @default.
- W4384665356 hasRelatedWork W1863485266 @default.
- W4384665356 hasRelatedWork W2172170808 @default.
- W4384665356 hasRelatedWork W2787184676 @default.
- W4384665356 hasRelatedWork W2803623613 @default.
- W4384665356 hasRelatedWork W2896453737 @default.
- W4384665356 hasRelatedWork W2949081101 @default.
- W4384665356 hasRelatedWork W2981246288 @default.
- W4384665356 hasRelatedWork W3046256638 @default.
- W4384665356 hasRelatedWork W3116531410 @default.
- W4384665356 hasRelatedWork W4239477580 @default.
- W4384665356 isParatext "false" @default.
- W4384665356 isRetracted "false" @default.
- W4384665356 workType "article" @default.