Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384666235> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4384666235 endingPage "3106" @default.
- W4384666235 startingPage "3106" @default.
- W4384666235 abstract "Dropout is one of the most popular regularization methods in the scholarly domain for preventing a neural network model from overfitting in the training phase. Developing an effective dropout regularization technique that complies with the model architecture is crucial in deep learning-related tasks because various neural network architectures have been proposed, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), and they have exhibited reasonable performance in their specialized areas. In this paper, we provide a comprehensive and novel review of the state-of-the-art (SOTA) in dropout regularization. We explain various dropout methods, from standard random dropout to AutoDrop dropout (from the original to the advanced), and also discuss their performance and experimental capabilities. This paper provides a summary of the latest research on various dropout regularization techniques for achieving improved performance through “Internal Structure Changes”, “Data Augmentation”, and “Input Information”. We can see that proper regularization with respect to structural constraints of network architecture is a critical factor to facilitate overfitting avoidance. We discuss the strengths and limitations of the methods presented in this work, which can serve as valuable references for future research and the development of new approaches. We also pay attention to the scholarly domain in the discussion in order to meet the overwhelming increase of scientific research outcomes by providing an analysis of several important academic scholarly issues of neural networks." @default.
- W4384666235 created "2023-07-20" @default.
- W4384666235 creator A5029780795 @default.
- W4384666235 creator A5086543418 @default.
- W4384666235 date "2023-07-17" @default.
- W4384666235 modified "2023-09-25" @default.
- W4384666235 title "A Review on Dropout Regularization Approaches for Deep Neural Networks within the Scholarly Domain" @default.
- W4384666235 cites W1936750108 @default.
- W4384666235 cites W1979482308 @default.
- W4384666235 cites W2100805904 @default.
- W4384666235 cites W2194775991 @default.
- W4384666235 cites W2292443655 @default.
- W4384666235 cites W2331143823 @default.
- W4384666235 cites W2479750863 @default.
- W4384666235 cites W2618530766 @default.
- W4384666235 cites W2683470288 @default.
- W4384666235 cites W2797372563 @default.
- W4384666235 cites W2895435696 @default.
- W4384666235 cites W2903105043 @default.
- W4384666235 cites W2916313152 @default.
- W4384666235 cites W2962858109 @default.
- W4384666235 cites W2962971773 @default.
- W4384666235 cites W2963080758 @default.
- W4384666235 cites W2963190567 @default.
- W4384666235 cites W2963855133 @default.
- W4384666235 cites W2964137095 @default.
- W4384666235 cites W2964325005 @default.
- W4384666235 cites W2965157938 @default.
- W4384666235 cites W2988975212 @default.
- W4384666235 cites W3015219268 @default.
- W4384666235 cites W3033960544 @default.
- W4384666235 cites W3035452548 @default.
- W4384666235 cites W3035682985 @default.
- W4384666235 cites W3036957116 @default.
- W4384666235 cites W3094085017 @default.
- W4384666235 cites W3100260481 @default.
- W4384666235 cites W3104949480 @default.
- W4384666235 cites W3107500918 @default.
- W4384666235 cites W3136334766 @default.
- W4384666235 cites W3156158944 @default.
- W4384666235 cites W3160644007 @default.
- W4384666235 cites W3172096628 @default.
- W4384666235 cites W3173982024 @default.
- W4384666235 cites W3176189116 @default.
- W4384666235 cites W4231090517 @default.
- W4384666235 cites W4285300757 @default.
- W4384666235 cites W4294690671 @default.
- W4384666235 cites W4319300998 @default.
- W4384666235 doi "https://doi.org/10.3390/electronics12143106" @default.
- W4384666235 hasPublicationYear "2023" @default.
- W4384666235 type Work @default.
- W4384666235 citedByCount "0" @default.
- W4384666235 crossrefType "journal-article" @default.
- W4384666235 hasAuthorship W4384666235A5029780795 @default.
- W4384666235 hasAuthorship W4384666235A5086543418 @default.
- W4384666235 hasBestOaLocation W43846662351 @default.
- W4384666235 hasConcept C108583219 @default.
- W4384666235 hasConcept C119857082 @default.
- W4384666235 hasConcept C154945302 @default.
- W4384666235 hasConcept C22019652 @default.
- W4384666235 hasConcept C2776135515 @default.
- W4384666235 hasConcept C2776145597 @default.
- W4384666235 hasConcept C2984842247 @default.
- W4384666235 hasConcept C41008148 @default.
- W4384666235 hasConcept C50644808 @default.
- W4384666235 hasConcept C81363708 @default.
- W4384666235 hasConceptScore W4384666235C108583219 @default.
- W4384666235 hasConceptScore W4384666235C119857082 @default.
- W4384666235 hasConceptScore W4384666235C154945302 @default.
- W4384666235 hasConceptScore W4384666235C22019652 @default.
- W4384666235 hasConceptScore W4384666235C2776135515 @default.
- W4384666235 hasConceptScore W4384666235C2776145597 @default.
- W4384666235 hasConceptScore W4384666235C2984842247 @default.
- W4384666235 hasConceptScore W4384666235C41008148 @default.
- W4384666235 hasConceptScore W4384666235C50644808 @default.
- W4384666235 hasConceptScore W4384666235C81363708 @default.
- W4384666235 hasFunder F4320322120 @default.
- W4384666235 hasIssue "14" @default.
- W4384666235 hasLocation W43846662351 @default.
- W4384666235 hasOpenAccess W4384666235 @default.
- W4384666235 hasPrimaryLocation W43846662351 @default.
- W4384666235 hasRelatedWork W1973895663 @default.
- W4384666235 hasRelatedWork W2901800056 @default.
- W4384666235 hasRelatedWork W3045276399 @default.
- W4384666235 hasRelatedWork W3099765033 @default.
- W4384666235 hasRelatedWork W3128220493 @default.
- W4384666235 hasRelatedWork W3160644007 @default.
- W4384666235 hasRelatedWork W3186919929 @default.
- W4384666235 hasRelatedWork W4287704896 @default.
- W4384666235 hasRelatedWork W4309224979 @default.
- W4384666235 hasRelatedWork W4313289428 @default.
- W4384666235 hasVolume "12" @default.
- W4384666235 isParatext "false" @default.
- W4384666235 isRetracted "false" @default.
- W4384666235 workType "article" @default.